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In mathematics, time scale calculus is a unification of integral and
differential calculus with the calculus of finite differences. Time scale
calculus was introduced in 1988 by the German mathematician Stefan
Hilger. However, similar ideas have been used before and go back at least
to the introduction of the Riemann–Stieltjes integral, which unifies sums
and integrals. This connection is valuable because many real-world
systems exhibit both continuous and discrete behaviors, making the time
scales framework and the Riemann-Stieltjes integral applicable to diverse
areas such as economic maximization, traffic dynamics, and biological
models. The time scales calculus has applications in any field that requires
simultaneous modelling of discrete and continuous data. It gives a new
definition of a derivative such that if one differentiates a function defined
on the real numbers then the definition is equivalent to standard
differentiation, but if one uses a function defined on the integers then it is
equivalent to the forward difference operator. By setting the time scale to
be the real numbers (R), a dynamic equation becomes a differential
equation, and by choosing the integers (Z), it becomes a difference
equation.
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The theory has found applications in various fields, such as:

1 Biology: Modeling population dynamics, like insect populations that
have continuous growth during a season and then a discrete period of
dormancy.

2 Engineering: Analyzing complex systems with both continuous and
discrete components.

3 Economics: Studying models of economic growth and household
consumption.

4 Pharmacokinetics: The time-scale calculus has been used to model
and solve pharmacokinetic problems involving multiple drug doses,
which inherently blend continuous absorption processes with discrete
drug intake events.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 3 / 110



The theory has gained significant attention and is an active area of
research, with numerous papers published on its theory and applications.
As a result of the active development of the theory, various branches of it
have been established.
Dynamic Calculus on Time Scales
Dynamic calculus on time scales is the study of the definition, properties,
and applications of the Hilger derivative or delta derivative of a function.
The process of finding the Hilger derivative is called Hilger differentiation
or delta differentiation. Given a function and a point in the domain, the
Hilger derivative at that point is a way of encoding the small-scale
behavior of the function near that point. By finding the Hilger derivative
of a function at every point in its domain, it is possible to produce a new
function, called the Hilger or delta derivative function of the original
function.
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List of Dynamic Calculus Topics

Sum rule in Hilger differentiation.

Constant factor rule in Hilger differentiation.

Linearity of Hilger differentiation.

Power rule.

Chain rule.

Product rule.

Quotient rule.

Inverse functions and Hilger differentiation.

Stationary point.

Maxima and minima.

First Hilger derivative test.
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List of Dynamic Calculus Topics

Second Hilger derivative test.

Extreme value theorem.

Hilger differentiation operator.

Taylor’s theorem.

L’Hôpital’s rule.

General Leibniz rule.

Mean value theorem.

Elementary Hilger functions.

Rolle’s theorem.
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Hilger Integral Calculus

Hilger integral calculus is the study of the definitions, properties, and
applications of two related concepts, the indefinite Hilger integral and the
definite Hilger integral. The process of finding the value of a Hilger integral
is called Hilger integration. The indefinite Hilger integral, also known as
the Hilger antiderivative, is the inverse operation to the Hilger derivative.
F is an indefinite Hilger integral of f when f is a Hilger derivative of F. The
definite Hilger integral inputs a function and outputs a number, which
gives the algebraic sum of areas between the graph of the input and the
x-axis. The technical definition of the definite Hilger integral involves the
limit of a sum of areas of rectangles, called a Hilger Riemann sum.
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List of Hilger Integral Calculus Topics

Sum rule in Hilger integration.

Constant factor rule in Hilger integration.

Linearity of Hilger integration.

Arbitrary constant of Hilger integration.

Fundamental theorem of dynamic calculus.

Hilger integration by parts.

Hilger integration by substitution

Hilger differentiation under the Hilger integral sign.
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Dynamic Calculus of Functions of Several Variables

Dynamic calculus of functions of several variables extends single-variable
dynamic calculus to analyze functions with multiple inputs, focusing on
partial dynamic derivatives, the dynamic gradient, the Hilger Jacobian,
and the total dynamic differential to understand rates of change, dynamic
tangent planes, and the sensitivity of the function to each input variable.
Key concepts include partial dynamic derivatives, which measure change
with respect to one variable while holding others constant; the total
dynamic differential, which approximates a small change in the function’s
output; the dynamic gradient vector, which points in the direction of the
greatest rate of increase; and the Hilger Jacobian matrix, a generalization
of the dynamic gradient for vector-valued functions.
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List of Dynamic Calculus of Functions of Several
Variables Topics

Sum rule in Hilger partial differentiation.

Constant factor rule in Hilger partial differentiation.

Linearity of Hilger partial differentiation.

Power rule.

Chain rule.

Product rule.

Quotient rule.

Inverse functions and Hilger partial differentiation.

Stationary point.

Maxima and minima.

First Hilger partial derivative test.
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Hilger Integral Calculus of Functions of Several Variables

Hilger integral calculus of functions of several variables is known as
multivariable Hilger calculus or multivariate dynamic calculus, and it
extends the concepts of single-variable calculus to multiple dimensions
through the use of multiple Hilger integrals. Hilger multiple integrals, such
as double and triple integrals, allow for the calculation of quantities like
areas, volumes, and total amounts within regions in 2D or 3D space by
Hilger integrating a function over several variables.
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List of Hilger Integral Calculus Topics

Sum rule in Hilger integration.

Constant factor rule in Hilger integration.

Linearity of Hilger integration.

Fundamental theorem of dynamic calculus.

Hilger integration by parts.

Hilger integration by substitution

Hilger differentiation under the Hilger integral sign.
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Dynamic Equations on Time Scales

A dynamic equation (DE) is an equation relating a function to its Hilger or
delta derivatives. If the function is of only one variable, we call the
equation an ordinary dynamic equation (ODE). Equations relating the
partial delta derivatives of a function of several variables are called partial
dynamic equations (PDEs).
List of Dynamic Equations Topics

Existence of solutions.

Uniqueness of solutions.

Multiplicity of solutions.

Dependence on initial data.

Dependence on parameters.
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List of Dynamic Equations Topics

Initial value problems.

Boundary value problems.

Initial boundary value problems.

Stability of solutions.

Oscillations of solutions.

Qualitative analysis of solutions.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 14 / 110



Subclasses of Dynamic Equations

Functional Dynamic Equations.

Fuzzy Dynamic Equations.

Fuzzy Dynamic Inclusions.

Impulsive Dynamic Equations.

Fuzzy Impulsive Dynamic Equations.

Impulsive Functional Dynamic Equations.

Fuzzy Impulsive Functional Dynamic Equations.
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Integral Equations on Time Scales

Integral equations on time scales are equations in which an unknown
function appears under a Hilger or delta integral sign. Various classification
methods for Hilger integral equations exist. A few standard classifications
include distinctions between linear and nonlinear; homogeneous and
inhomogeneous; Fredholm and Volterra; first order, second order, and third
order; and singular and regular integral equations.[ These distinctions
usually rest on some fundamental property such as the consideration of the
linearity of the equation or the homogeneity of the equation.
List of Integral Equations Topics

Existence of solutions.

Uniqueness of solutions.

Multiplicity of solutions.

Dependence on initial data.

Dependence on parameters.
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List of Integral Equations Topics

Initial value problems.

Boundary value problems.

Initial boundary value problems.

Stability of solutions.

Oscillations of solutions.

Qualitative analysis of solutions.
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Subclasses of Integral Equations on Time Scales

Integro-Dynamic Equations on Time Scales.

Impulsive Integral Equations on Time Scales.

Functional Integral Equations on Time Scales.

Fuzzy Integral Equations.

Fuzzy Integro-Dynamic Equations on Time Scales.

Fuzzy Impulsive Integral Equations on Time Scales.
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Numerical Analysis on Time Scales

Numerical analysis on time scales is the study of algorithms that use
numerical approximation (as opposed to symbolic manipulations) for the
problems of time scales analysis. It is the study of numerical methods that
attempt to find approximate solutions of problems rather than the exact
ones. Numerical analysis on time scales finds application in all fields of
engineering and the physical sciences, the life and social sciences like
economics, medicine, business and even the arts. Examples of numerical
analysis on time scales include: dynamic equations as found in celestial
mechanics (predicting the motions of planets, stars and galaxies),
numerical linear algebra in data analysis, simulations in biology and theory
of populations.
Key Concepts in Numerical Analysis on Time Scales

Direct methods.

Iterative methods.

Generation of errors.

Propagation of errors.
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Key Concepts in Numerical Analysis on Time Scales

Round-off.

Truncation error.

Numerical stability.

Well-posed problems.

Computing values of functions.

Interpolation.

Extrapolation.

Regression.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 20 / 110



Key Concepts in Numerical Analysis on Time Scales

Solving equations.

Solving systems.

Solving eigenvalue problems.

Solving singular problems.

Optimization.

Evaluating Hilger integrals.

Dynamic equations.

Partial dynamic equations.

Integral equations.
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Dynamic Geometry on Time Scales

Dynamic geometry on time scales unifies the classical differential geometry
and discrete geometry. It uses the techniques of single variable time scales
calculus, vector time scales calculus, linear algebra and multilinear algebra.
Concepts of Dynamic Geometry on Time Scales

Dual spaces.

Tangent spaces.

Curves.

Surfaces.

Manifolds.
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Concepts of Dynamic Geometry on Time Scales

Dynamic differential forms.

Hilger integration of forms.

Volume forms.

Tensor calculus.

Vector calculus.
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Convex Analysis on Time Scales

Convex analysis is the branch of time scales analysis devoted to the study
of properties of convex functions and convex sets, often with applications
in convex minimization, a subdomain of optimization theory.
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Programme of the Lecture Course

The main aim of this cycle of lectures on time scales analysis is to
introduce the participants to the basic terms and facts of time scales
analysis and how to operate with them.
The programme of the course includes the following topics.

Time Scales

Definition. Examples
Forward Jump Operators, Backward Jump Operators and Graininess
Functions
A Classification of Points
The Topology of Time Scales
Functions and Jump Operators
The Induction Principle
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Time Scales Differentiation

Definition for Delta Derivative. Examples

Basic Rules for Delta Differentiation

Higher Order Delta Differentiation

Nabla Derivatives

Delta Mean Value Theorems

Delta Increasing and Delta Decreasing Functions

Delta Convex and Delta Concave Functions

Extreme Values

Completely Delta Differentiable Functions

One-Sided Delta Derivatives

Delta Chain Rules

Delta L’Hopital’s Rule
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Time Scales Integration

Regulated, Rd-Continuous and Delta Pre-Differentiable Functions

Delta Indefinite Integral

The Darboux Delta Integral

The Riemann Delta Integral

Other Definition for the Riemann Delta Integral

Properties of the Riemann Integral

Improper Delta Integrals of the First Kind

Improper Integrals of the Second Kind

Delta Monomials

The Taylor Formula

Survey on Nabla Integrals
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Time Scales Elementary Functions

Hilger’s Complex Plane

Delta Regressive Functions

The Delta Exponential Functions

Delta Hyperbolic Functions

Delta Trigonometric Functions
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Definition

A time scale is an arbitrary nonempty closed subset of the real numbers.

We will denote a time scale by the symbol T. We suppose that a time
scale T has the topology that inherits from the real numbers with the
standard topology.

Example

The sets [−1, 4], R, Z, N,{
−2, −1, −1

2
, 0,

1

4
,

1

3
, 2, 3, 6

}
,

and

{1}
⋃{

1

n
+ 1

}
n∈N

⋃
{3}

⋃{
4

n2
+ 3

}⋃
{9}

⋃{
7

n4
+ 9

}
n∈N

are time scales.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 29 / 110



Example

The sets (−3, 7), [0, 5), (1, 7] and
{
5
n + 3

}
n∈N are not time scales.

Example

Let a, b > 0. The sets

Pa,b =
∞⋃
k=0

[k(a+ b), k(a+ b) + a]

are time scales.
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Example

The set of harmonic numbers

H0 = 0,

Hn =
n∑

k=1

1

k
, n ∈ N,

is a time scale.

Example

Let {αn}n∈N0 be a sequence of real numbers with αn > 0, n ∈ N0. Define

tn =
n−1∑
k=0

αk , n ∈ N.

Then the set T = {tn : n ∈ N} is a time scale.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 31 / 110



Example

(Cantor Set) Consider the interval K0 = [0, 1]. We obtain a subset K1 of
K0 by removing the open ”middle third” of K0, i.e., the open interval(
1
3 ,

2
3

)
from K0. The set K2 is obtained by removing the two open middle

thirds of K1, i.e., the two open inetrvals
(
1
9 ,

2
9

)
and

(
7
9 ,

8
9

)
from K1.

Proceeding in this manner, we obtain a sequence {Kn}n∈N0 of sub sets of
the interval [0, 1]. In the figure below are shown the sets K0, K1, K2, K3

and so forth
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Example
.

Figure: Expansion of a Cantor Set.
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Example

The Cantor set C is now defined as follows

C =
∞⋂
n=0

Kn.

The Cantor set is a time scale. Any its element x can be represented in its
ternary expansion as follows

x =
∞∑
j=1

aj
3j
, where aj ∈ {1, 2, 3}, j ∈ N.

This expansion is unique unless x is of the form p3−k for some integers p
and k . In this case, x has two expansions

1 aj = 0 for j > k.

2 aj = 2 for j > k.
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Example

Assume that p is not divisible by 3. One of these expansions will have
ak = 1 and the other wiill ak = 0 or ak = 2. We have that

a1 = 1 if and only if
1

3
< x <

2

3

and

a1 ̸= 1 and a2 = 1 if and only if
1

9
< x <

2

9
or

7

9
< x <

8

9

and so forth.
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Example

If

x =
∞∑
j=1

aj
3j

and y =
∞∑
j=1

bj
3j
,

then x < y if and only if there exists an n ∈ N such that an < bn and
aj = bj for j < n. Thus, the Cantor set C is the set of all 0 ≤ x ≤ 1 that
have a base-3 expansion

x =
∞∑
j=1

aj
3j

with aj ̸= 1 for any j .
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Example

The set

T = {tn = −1

n
: n ∈ N} ∪ N0

is a time scale.

Example

The set

[0, 1] ∪
{
1 +

1

n

}
n∈N

∪ (2, 3] ∪
{
3 +

1

n

}
n∈N

is a time scale.
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Example

Let

U =

{
1

2n
: n ∈ N0

}
.

Then the set

{0}∪U∪(1−u)∪(1+U)∪(2−U)∪(2+U)∪(3−U)∪(3+U)∪{1, 2, 3, 4}

is a time scale.
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Exercise

Check if the following sets are time scales

1 2N0 .

2 (−1, 1] ∪ [2, 3] ∪ [4, 8].

3
{
− 1

2n : n ∈ N
}
∪ 2N0.

4 U ∪ (2− U) ∪ (2 + U), U =
{

1
4n : n ∈ N0

}
.

5 [0, 2] ∪
{
2 + 1

n

}
n∈N ∪ (3, 5] ∪ 7N0 .
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We start by defining the forward jump operator.

Definition

Let T be a time scale. For t ∈ T we define the forward jump operator
σ : T → T in the following manner

σ(t) = inf{s ∈ T : s > t}.

In this definition, we put inf ∅ = supT. Then, t = σ(t) if t is a maximum
of T.

Note that σ(t) ≥ t for any t ∈ T.
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Example

Let T = hZ, h > 0. Take t ∈ T arbitrarily. Then, there is a n ∈ Z such
that t = hn. Hence, applying the definition for forward jump operators, we
find

σ(t) = inf{s = hp, p ∈ Z : hp > hn}

= h(n + 1)

= hn + h

= t + h.
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Example

Let T = 3N0 . Take t ∈ T arbitrarily. Then, there is a n ∈ N0 such that
t = 3n. Hence, applying the definition for forward jump operators, we find

σ(t) = inf {3s , s ∈ N0 : 3
s > 3n}

= 3n+1

= 3 · 3n

= 3t.
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Example

Let T = Nk
0 , where k ∈ N is fixed. Take t ∈ T arbitrarily. Then, there is a

n ∈ N0 such that t = nk . Hence, n = k
√
t. Now, applying the definition for

forward jump operators, we arrive at

σ(t) = inf{sk , s ∈ N0 : s
k > nk}

= (n + 1)k

=
(

k
√
t + 1

)k
.
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Example

Let T = {Hn : n ∈ N0}, where Hn, n ∈ N0, are the harmonic numbers.
Take n ∈ N0 arbitrarily. Then, applying the definition for forward jump
operators, we find

σ(Hn) = inf{Hs , s ∈ N0 : Hs > Hn}

= inf

{
Hs , s ∈ N0 :

s∑
k=1

1

k
>

n∑
k=1

1

k

}

=
n+1∑
k=1

1

k

= Hn+1.
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Example

Let T = P1,3. Then

T =
∞⋃
k=0

[4k, 4k + 1]

= [0, 1] ∪ [4, 5] ∪ [8, 9] ∪ [12, 13] ∪ . . . .

If t ∈ [0, 1), then, applying the definition for forward jump operators, we
find

σ(t) = inf{s ∈ T : s > t}

= t.
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Example

If t = 1, then

σ(1) = inf{s ∈ T : s > 1}

= 4.

Let now, k ∈ N be arbitrarily chosen. If t ∈ [4k , 4k + 1), then we have

σ(t) = inf{s ∈ T : s > t}

= t.
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Example

If t = 4k + 1, then

σ(t) = inf{s ∈ T : s > 4k + 1}

= 4(k + 1)

= 4k + 4

= 4k + 1 + 3

= t + 3.
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Example

Therefore

σ(t) =


t if t ∈

∞⋃
k=0

[4k, 4k + 1)

t + 3 if t ∈
∞⋃
k=0

{4k + 1}.
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Example

Let T = C , where C is the Cantor set. We will find σ(t) for t ∈ T. For
this aim, let C1 denote the set of all left-hand end points of the open
intervals that are removed. Then

C1 =

{
m∑

k=1

ak
3k

+
1

3m+1
: m ∈ N, ak ∈ {0, 2} for any 1 ≤ k ≤ m

}
.

With C2 we will denote the set of all right-hand end points of the open
intervals that are removed. We have

C2 =

{
m∑

k=1

ak
3k

+
2

3m+1
: m ∈ N, ak ∈ {0, 2} for any 1 ≤ k ≤ m

}
.

Take t ∈ C arbitrarily. We have the following cases.
Let t ∈ C1. Then

t =
m∑

k=1

ak
3k

+
1

3m+1
.
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Example

Hence, we obtain

σ(t) = inf{s ∈ T : s > t}

=
m∑

k=1

ak
3k

+
2

3m+1

=
m∑

k=1

ak
3k

+
1

3m+1
+

1

3m+1

= t +
1

3m+1
.

Let t ∈ C2. Then

t =
m∑

k=1

ak
3k

+
2

3m+1
.

Hence,

σ(t) = inf{s ∈ T : s > t}

= t.
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Example

Let t ∈ T\(C1 ∪ C2). Then

σ(t) = inf{s ∈ T : s > t}

= t.

Consequently

σ(t) =


t + 1

3m+1 if t ∈ C1, t =
m∑

k=1

ak
3k

+ 1
3m+1

t if t ∈ T\C1.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 51 / 110



Example

Let {αn}n∈N0 be a sequence of real numbers with αn > 0, and

tn =
n−1∑
k=0

αk , n ∈ N,

and
T = {tn : n ∈ N}.

We will find σ(t), t ∈ T. Take n ∈ N arbitrarily. Then

σ(tn) = inf

{
x ∈ T : s =

n−1∑
k=0

αk , s > tn

}

=
n∑

k=0

αk =
n−1∑
k=0

+αn = tn + αn.
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Example

Let

T =

{
tn = −1

n
: n ∈ N

}
∪ N0.

We will find σ(t), t ∈ T. Take n ∈ N arbitrarily. Then

n = − 1

tn

and

σ(tn) = inf

{
s ∈ T : s = − 1

m
,m ∈ N, s > t0

}
= − 1

n + 1
= − 1

− 1
tn
+ 1

= − tn
tn − 1

.
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Example

Next, if t ∈ N0, then

σ(t) = inf{s ∈ T : s > t}

= t + 1.

Consequently

σ(t) =


− t

t−1 if t ∈
{
tn = − 1

n : n ∈ N
}
, t = tn

t + 1 if t ∈ N0.
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Example

Let

T =

{
tn =

(
1

2

)2n

: n ∈ N0

}
∪ {0, 1}.

We will find σ(t), t ∈ T. Take n ∈ N arbitrarily. Then

σ(tn) = inf{s ∈ T : s > tn}

=

(
1

2

)2n−1

=

(
1

2

)2n· 1
2

=

((
1

2

)2n
) 1

2

=
√
tn.
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Example

Next,

t0 =
1

2
and σ(t0) = 1

and

σ(0) = 0, σ(1) = 1.

Consequently

σ(t) =



√
t if t ∈

{
tn =

(
1
2

)2n
: n ∈ N

}
1 if t = 1

2

0 if t = 0

1 if t = 1.
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Example

Let U =
{

1
2n : n ∈ N

}
and

T = U ∪ (1− U) ∪ (1 + U) ∪ (2− U) ∪ (2 + U) ∪ {0, 1, 2}.

We will find σ(t), t ∈ T. We have the following cases.
Let t = 0. Then

σ(0) = 0.

Let t = 1
2 . Then

σ

(
1

2

)
=

3

4
.

Let t = 1. Then
σ(1) = 1.
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Example

Let t = 3
2 . Then

σ

(
3

2

)
=

7

4
.

Let t = 2. Then
σ(2) = 2.

Let t = 5
2 . Then

σ

(
5

2

)
=

5

2
.
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Example

Let t ∈ U\
{
1
2

}
. Then

t =
1

2n

and

σ(t) =
1

2n−1
=

2

2n
= 2t.

Let t ∈ (1− U)\
{
1
2

}
. Then t = 1− 1

2n and 1
2n = 1− t. Hence,

σ(t) = 1− 1

2n+1
= 1− 1

2
· 1

2n
= 1− 1− t

2
=

1 + t

2
.
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Example

Let t ∈ (1 + U)\
{
3
2

}
. Then

t = 1 +
1

2n
.

Hence,
1

2n
= t − 1

and

σ(t) = 1 +
1

2n−1
= 1 +

2

2n
= 1 + 2(t − 1) = 2t − 1.
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Example

Let t ∈ (2− U)\
{
3
2

}
. Then

t = 2− 1

2n

and
1

2n
= 2− t.

Hence,

σ(t) = 2− 1

2n+1
= 2− 1

2
· 1

2n
= 2− 2− t

2
=

t + 2

2
.
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Example

Let t ∈ (2 + U)\
{
5
2

}
. Then

t = 2 +
1

2n

and
1

2n
= t − 2.

Hence,

σ(t) = 2 +
1

2n−1
= 2 +

2

2n
= 2 + 2(t − 2) = 2(t − 1).

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 62 / 110



Example

Consequently

σ(t) =



0 if t = 0

3
4 if t = 1

2

1 if t = 1

7
4 if t = 3

2

2 if t = 2

5
2 if t = 5

2

2t if t ∈ U\
{
1
2

}
1+t
2 if t ∈ (1− U)\

{
1
2

}
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Example

σ(t) =


2t − 1 if t ∈ (1 + U)\

{
3
2

}
t+2
2 if t ∈ (2− U)\

{
3
2

}
2(t − 1) if t ∈ (2 + U)\

{
5
2

}
.
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Exercise

Find σ(t), t ∈ T, where
1 T = hZ+ k, h > 0, k ∈ R.
2 T = (−2N0) ∪ 3N0 .

3 T = P3,7 ∪ [4, 6].

4 T = 11N0 ∪ {0}.
5 T = [1, 2] ∪ [3, 4] ∪ [7, 8] ∪ 9N.

Svetlin G. Georgiev Time Scales Analysis Lecture 1 September 10, 2025 65 / 110


