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Definition

For a function f : T — R and k,/ € Ny, define
(0 =f (1), teT,

and

fpkal(t) =i (0/ (pk(t)>> , teT,

and

(e = £ (0 (1)), teT.
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Note that in the general case, we have
R (8) £ £ (E), teT.
Really, let T = {-1,0} U {+} _ and f(t)=t, teT. Then

p(o(0)) = p(0)=-1

and

Thus,
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Example

Let T = {-1,0} U {}}, _ and
f(t)=1+4t%, teT.
We will find

F2(t), foPo(t) and fOP(t) for teT.

Firstly, we will determine the forward and backward jump operators for the

time scale T. We have the following cases.

v,
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Let t=1 neN, n>2 Then

o(t) =

and

v
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Let t = 1. Then
o(l) = 1,
1
1) = =
p(1) 5
Let t = 0. Then
c(0) = 0,
p(0) = —L
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Let t = —1. Then

o(-1) = 0,

p(-1) = -1
Therefore . )

= If te {ﬁ}neN,nzz

1 if t=1

t) =
o(t) 0 if t=0

0 if t=-1

and
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?tt it te{%}neN,n22

L0 t=1
t)=¢ =2
A=Y T1 i t—o
—1 if t=-1.

Hence, we have the following cases.
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Let t € {7} ,cn mp Then

p*(t) = p(p(t))

and
v
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Next,

Il
-
VRS
~

)

t2
(1+2t)?
(1+2t)2 + 4t2
(1+2t)2
1+ 4t + 4t% + 4t

= 1+4

(1+ 2t)2
1+ 4t + 8t?
(1+2t)?
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and

a(p(a(t))) = o

ot
1+t
-1

= o(t)

ot

o 1-—t
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Moreover,

fore(t) = f(a(p(a(t))))
t

_ g (m)

_ i 4¢2

B (1-1)?

(-2 442

B (1—-1t)
1— 2t + t? + 4¢2

B (1—t)
1—2t+5¢t2

T (r—ep
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F0 (1) = f(p (o%(2)))

t
= f(—
(1+t>
4t2

(1+1)?

(1+ t)% + 4t
(14 t)?

- 1+

|k i = 77 42 A
(1+1)?

14 2t+5¢2
(14 t)?
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Let t =1. Then

and

Khaled Zennir

pP(1)

7 (1)

p(p(1))

(2)

W=

F(p*(1))
(5)
14
13
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and

Moreover,

fUpU(l) = f(a(p(U(l))))
= f(1)
— 1+4

v
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and
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FP(1) = f(p%0%(1))
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Let t = 0. Then

opo(0) = op(o(0))
S 0)

~—

and

Next, |
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P(0) = p(p(0)
= p(=1)
- il

and

(0) = (%(0))
— (1)
= 1+4

Moreover,
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p°0%(0) = p’o(a(0))
p*(0(0))
p°(0)
p(p(p(0)
p(p(—1)
p(—1)

I
N~—

and
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f”2p3(0) = f(p*°*(0))

= f(-1)
= 1+4
= b.

Let t = —1. Then

I
)
T

—
~

and
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Next,

and

FP(-1) =

Il
)
—~~
+
> =
N—r

opo(=1) = o(p(c(-1)))
(

[
= A
|
=
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Moreover,

pPo?(-1)

and

for7(=1) = f(opo(-1))
= f(0)
-1
= plo(o(-1))
= p*(c(0))
= p(0)
= p*(p(0))
= p°(=1) = p(p(-1)) = p(-1) = -1
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Fr(-1) = f(p*0%(~1))

= f(-1)
= 1+4
= b.
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Example
Let T = 3% and

2—t
=453

We will find £77°7*(1) and £#9°(27). By Example 57, we have
o(t)=3t, teT,and by Example ??, we find

ple) = {

teT.

if t=1
if te3N

W+

Then
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o*pPo(l) = o*p*(a(1)) = o*p?(3)
= o*p(p(3)) = o*(p(1)) = 0*(1) = o>(a(1)
3(3) = 0%(0(3)) = 0(9) = o(0(9)) = o(27) = 81
and
pop(27) = p(o(p(27) = p(a(9)) = p(27) = 9.
Hence,
fore'(1) = f(o*pP0(1)) = £(81)
. 2-81 _ -79 79
T 4+43-81 4+243 247
and
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fror2r) = f(pop(27))
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Example

|
3

Let T = {(%) :neNo}U{O,l} and

V1i+t+t2 teT.

f(t) =
We will find
We have
1
o(t) =
(t) 0
1

and by Example ??, we have

F(t), P (), FPO(t),

if t=3
if t=0
if t=1

teT.

Vi oif te{(%)znanN}
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p(t)=4 0 if t=0

3 if t=1

Thus, we have the following cases.
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Let t € {(%)zn ‘ne N}. Then

and

and

Hence,

Time Scales Analysis Lecture 4 September 21, 2025 31/88



Bemple
= A = ()= VIt 6

and

and

F7(t)

) = f(PO) = (V) = Y1+ i+,
FP0(t) = f(o3pA(t) = F(VE) = 1+ i+t
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and

and

Hence,
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F°37°(0) = f(p203(0)) = £(0) =1,

and

770) = f(o%(0) = F(0) =1
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Let t = 3. Then p? (3) =p(p(3)) =p(3) = 15 and

() - <p2<

and
o) - (3
= Polo(1)) = P2o(1) = p(o(1)
— AW =slo) = (3) =}
Hence,
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T
() - () (&)

\/1+ 11 _\/256+16+1_\/273

- 16 256 256 ~ 16
and
1 1 1
f03p2 1 _ 2 3 (14 —f(=
(5) = (7 (3) =7 (s
1 1 16+4+1 21
e S
16 16 4
and

-
<
N
Q
w

7N

N —

~__
Il

(2 (2))
= F(1)=VIFIFI=V3

4
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a*p(1)
and
pPo(l) =
Hence,
A1) =
and
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and

R = ) =f (

V21

4’

PP(1) = foPR1) = F(1) = VITI+1= V3
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The classical mathematical induction is a concept that helps to prove
mathematical results and theorems for all natural numbers. The principle
of the classical mathematical induction is a specific technique that is used
to prove certain statements in algebra which are formulated in terms of n,
where n is a natural number. Any mathematical statement, expression is
proved based on the premise that it is true for n =1, n = k, and then it is
proved for n = k + 1.
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Theorem (Induction Principle)

Let ty € T and assume that

{5(t): t€[ty,0)}

is a family of statements satisfying
i S(to) is true.
i If t € [ty,00) is right-scattered and S(t) is true, then S(o(t)) is true.

i If t € [to,00) is right-dense and S(t) is true, then there exists a
neighbourhood U of t such that S(s) is true for all s € U N (t,00).

iv If t € (to, 00) is left-dense and S(s) is true for s € [to, t), then S(t) is
true.

Then S(t) is true for all t € [ty, c0).
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Let
S* = {t € [ty,00) : S(t) isnottrue}.
We assume that S* # (). Let inf S* = t*. Because T is closed, we have
t* e T.
Q If t* = ty, then S(t*) is true.

Q If t* # to and t* = p(t*), then, using iv, we get that S(t*) is true.

@ Ift* # ty and p(t*) < t*, then p(t*) is right-scattered. Since
S(p(t*)) is true, we get that S(t*) is true.

Consequently, t* & S*.
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If we suppose that t* is right-scattered, then, using that S(t*) is true and
ii, we conclude that S(o(t*)) is true, which is a contradiction. From the
definition of t*, it follows that t* # supT. Since t* is not right-scattered
and t* # sup T, we obtain that t* is right-dense. Because S(t*) is true,
using iii, there exists a neighbourhood U of t* such that S(s) is true for all
s € UN(t*,00), which is a contradiction. Consequently, S* = (). O
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Theorem (Dual Version of Induction Principle)

Let ty € T and assume that

{S(t) : t € (—o0,tp]}

is a family of statements satisfying
i S(to) is true.
i If t € (—o0, ty] is left-scattered and S(t) is true, then S(p(t)) is true.

i If t € (—o0, to] is left-dense and S(t) is true, then there exists a
neighbourhood U of t such that S(s) is true for all s € U N (—o0, t).

iv If t € (—o0, ty) is right-dense and S(s) is true for s € (t, to), then
S(t) is true.

Then S(t) is true for all t € (—o0, tp].
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Let
S*={te(—oo,tp]: S(t) isnottrue}.

Assume that S* # (). Note that top & S*. Let

t* = sup S*.

Q If t* = ty, then S(t*) is true.
Q If t* # ty and t* = o(t*), then, using iv, we obtain that S(t*) is true.

@ Ift* # ty and t* < o(t*), then o(t*) is left-scattered, p(c(t*)) = t*,
and S(o(t*)) is true. Therefore, we conclude that S(t*) is true.

Therefore, t* & S*. ]
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If t* is left-scattered, then, using ii, we get that S(p(t*)) is true, which is
a contradiction. If t* is left-dense, then, using iii, there exists a
neighbourhood U of t* such that S(s) is true for all s € U N (—o0, t¥),
which is a contradiction. Consequently, S* = (). O
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Let T = 3N, We will prove the inequality

1 1
Z(s2 -r’)< 1—3(53 —r3) forany r<s, rseT. (1)
Fix r,seT, r<s. Let
. 1 2 2 1 3 3
5(t): (7 =) < F(E =), telrshr (@)

The statement S(r) is true. Observe that any t € T is right-scattered.
Assume that S(t) is true. Then o(t) = 3t and t?> < t3. Hence, using (2),
we find 2(t2 — r?) +2t2 < L(3 — r¥) + 213, or

109t — r?) < L2763 = r3). Thus, ((0(£))* = r?) < ((a())® = ).
Consequently S(o(t)) is true. Applying the induction principle, we
conclude that (2) is true for any t € [r, s|t and then (1) is true for any
r,seT, r<s.
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Example

Let T=[-2,-1)U{-%} nU{0U{}} sV (3] U] 5] Wewil
prove

S(t):vVt+2>t forany teT.

We have the following cases. For t = —2, we have 0 > —2, i.e., the given
inequality is true. Let t € T be right-scattered. Then, we have the

following cases. Let t = —% for some n € N. Then \/—1 +2>0> —l,

i.e., S(t) is true. Note that o(t) = —ﬁ and /— 1 +2>0>— n+1,

i.e.,, S(o(t)) is true. Let t = 1 for some ne€ N, n 2 2. Then > ? and

112> %, whereupon /1 +2 > 1 ie, S(t)is true. Note that
o(t) = -Ls. Lo W and -1; +2> ﬁ, whereupon

1l 192>

n—1

(o(t)) is true.
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Let t = 3. Then
3 7 9
S40 = 4f=>4fz==
32 = V3o 3

i.e., S(t) is true. Note that o(t) = £ and

\ 2 -~ Vi Vi~

i.e., S(o(t)) is true. Let t is right-dense. Then

te[-2,-1)U{0} U (1,3] U [L,%]. We have the following cases. Let
t€-2,-1)0 (1, 3] UL, B Then

t?—t—2<0, te (1,%] U [%,%] , and hence,

t2<t+2, te(l, %l u [, %1] whereupon

VE+2>t, te (1,3] Ul ] For t € [-2,-1) the inequality is true.
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Example

Let t = 0. Then /2 > 0 and by point 2 it follows that there is a
neighbourhood U of 0 so that S(s) is true for any s € UNT. Let tis
leftOdense. Then t € [-2,—1) U {0} U (1, 3] U (£, 1]. By points 2 and 3,
we get that if s € [to, t)T for some ty € T and S(s) is true, then S(t) is

true. By the induction principle, it follows that S(t) is true for any t € T.
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Let T =
(—o0,~8)U{ 7 = 1} (g U{=THU{=7 + 1}, L U(B}U{B + 1}, ., U0
We will prove
2t — 15
S(t):

(t) t+5
We will prove that (3) holds for any t € (—oo, —6]t using the dual
induction principle. We have

>0 forany teT. (3)

2.(~6) — 15 ~12 15
— = ——— =27>0
—6+5 -1 -5
i.e., S(—6) is true. Let t € (—oo, —6]y is left-scattered. Then we have the
following cases. Let t = —7 — % for some n € N, n> 2. Then
p(t) = =7 — -L;. We have
1 2 2
2(-7—-1)-15 _ —14—;—15:294rH>O
—7-145 -2-1 241 77
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Let t = —8. Then t is left-dense and (3) holds for any t € (—oo, —8]r.
Thus, there is a neighbourhood U of —8 such that (3) holds for any

t € UN(—oo,—6]7. Let t = —7 + % for some n € N. Then

p(t) = =7+ 2. We have

n+1°
1 2 2
2(-7+1)-15 _ _14+5_15:29_5>0
-7+1+5 -2+1 2-1 -7

because 20 — 2 > 0 and 2 — 1 > 0. Thus, 5(t) is true. Next,

2(Thn) 15 w152
] R

- - >0,
-7+ 2545 —24 L 2L
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29 — nil >0and 2— nil > 0. Therefore S(p(t)) is true. Let

t € (—o0, —6|r is left-dense. Then we have the following cases. Let

t € (—oo,—8)r. Then 2= > 0and 2= >0 forany s € (—oo,1)r.
Let t = —7. By 1.2.1, it follows that there is a neighbourhood U of —7
such that S(s) holds for any s € UN (—o0, —7)t. Let t € (—o0, —6]r is
right-dense. Then we have the following cases. Let t € (—oo, —8)1. By
the previous cases, we get that S(s) is true for any s € (t, —6)r and S(t)
is true. Let t = —7. By 1.2.1, it follows that there is a neighbourhood U
of —7 such that S(s) holds for any s € U N (—o0, —7)1. Now, applying
the dual induction principle, we conclude that S(t) is true for any

t e (—OO, —6]11*.
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Now, we will prove that (3) holds for any t € [8, c0)r using the induction
principle. We have
2.8-15 1615 1

si5 ~ 13 130

Thus, S(8) is true. Let t € [8,00)r is right-scattered and S(t) is true.
Then we have the following cases. Let t = 8 + % for some ne N, n > 2.
Then o(t) = 8 + -1:. We have

2(8+4)—-15 _ 16+2-15 142

1 1 — 1>0
8+1+5 13+1 13+1

and
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2(8+721) - 15 15 2 —ils s =

>0,

84+ -1 +5 13+-L T 13+-L

i.e.,, S(t) and S(o(t)) is true. Let t =9. Then o(9) = 10. We have

2:9-15 _ 18-15 3
9+5 14 14
and
2-10—15 20 — 15 5 1
= =—=2>0.
10+ 5 15 15 3

So, 5(9) and 5(10) are true. Let t = 10" for some n € N. Then
o(t) = 10"1. We have 2'118,,";;5 > 0 and % > 0. Thus, S(t) and
S(o(t)) are true.

v
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Let t = 8. We have
2.8—-15 16—-15 1

§15 ~ 13 130

i.e., S(8) is true. By 2.2.1, it follows that there is a neighbourhood U of 8
such that S(t) is true for any t € U N [8,00)r. Note that there is no
left-dense points in (8,00)r. Now, applying the induction principle, we
conclude that S(t) is true for any t € [8, c0)r.
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Let T={-1}U{-1- HGNU{H3}HGN (1,2]. We will prove that
S(t):t?—t—-2<2 forany t € T. We have

(-1 -(1-1)—2 = 1+1-2=0,

i.e., S(—1) is true. Let t € T be right-scattered. We have the following
cases. Let t = -1+ % forsome n € N, n > 2. Then o(t) = -1+ ﬁ
We have

1\2 1 2 1 1
<_1+n2> _<_1+n2>_2 = l-S+5+1-—-2

i.e., S(t) is true. Next,
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() - ()

2 1 1
SR PO R P I e

_ 13 _1—3(n—1)2<o

(=1 (n—1)? (n=1)* —

Thus, 5(0’( )) is true. Let t = 2 for some n € N, > 2. Then
o(t) = (GO 1 . We have
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i.e., S(t) is true. Moreover,

(ram) - () -2

_ 2 1 . 1
B A G A e
1 3 1-3(n-1)>

(=16 (n-1°  (n—1)

2

<0

and then S(o(t)) is true.
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Let t € T be right-dense and S(t) be true. We have the following cases.
Let t = —1. Then, by 2.1, it follows that there is a neighbourhood U of
—1 such that S(s) is true forany s € UNT. Let t =0. Then, by 2.2, it
follows that there is a neighbourhood U of 0 such that 5(s) is true for any
sc UNT. Let t € (1,2]. Then t> —t — 2 < 0 and there is a
neighbourhood U of t such that S(s) is true forany s€ UNT. Lett € T
be leftOdense and S(s) is true for any s € [—1,t). We have that t € (1,2].
By the previous cases it follows that S(t) is true. Now, applying the
induction principle, we conclude that S(t) is true for any t € T.
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Let T = N. We will prove that

S(n): 1*4-2%+---+n* = —n(n+1)(2n+1)(3n*+3n—1) forany neT.

1
30
We have

1

1
~—1-(1+1)-(2-1+1)3-1°+3-1-1)= —.2.3-5=1=1*
30 (1+1)-(2-14+1)( + ) 30

Thus, S(1) is true. Firstly, note that any point of T is right-scattered.
Assume that S(n) is true for some n € T. We have o(n) = n+ 1. Then

2+t (n+ ) =14+ 2+ 0t + (1)

:1(

i
— <31 (2n+1)(3n* +3n— 1)+ (n +1)3>
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1
— %(n +1) <6n4 +6n% — 2n% 4+ 3n% + 3n?

—n+ 30n% +90n% + 90n + 30>

1

= %(n +1) (6n* + 39n* + 91n% + 89n + 30)
1

— %(n +1)(n+2) (6n® + 270 + 37n + 15)

1
= p(n+D(n+2)(2n+ 3)(3n* +9n + 5)
1
= %(n—i- 1)(n+2)(2n—|—3)(3n2+6n+3+3n—|—3— 1)

1
= 3(n+ D +2)(2n+3) (3(n + 12 +3(n+1)—1).
Thus, S(o(n)) is true. Applying the induction principle, we conclude that
S(n) is true for any n € N.

Khaled Zennir Time Scales Analysis Lecture 4 September 21, 2025 61/88




Appendix
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We start by defining the forward jump operator.

Definition

Let T be a time scale. For t € T we define the forward jump operator
o :T — T in the following manner

o(t)=inf{se€T:s >t}

In this definition, we put inf ) = supT. Then, t = o(t) if t is a maximum

of T.

Note that o(t) > t for any t € T.
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Let T = hZ, h > 0. Take t € T arbitrarily. Then, there is a n € Z such
that t = hn. Hence, applying the definition for forward jump operators, we
find
o(t) = inf{s=hp,peZ:hp> hn}

= h(n+1)

= hn+h

= t+h |
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Let T = 3No. Take t € T arbitrarily. Then, there is a n € Ng such that
t = 3”. Hence, applying the definition for forward jump operators, we find
o(t) = inf{3°,seNy:3°>3"}
— 3n+1
= 3.3
= 3t.
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Example

Let T = N&, where k € N is fixed. Take t € T arbitrarily. Then, there is a
n € Ng such that t = n%. Hence, n = ¥/t. Now, applying the definition for
forward jump operators, we arrive at

o(t) = inf{sk seNy:sk>nk}

= (n+1)"

= (\k/?+1)k.
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Let T = {H, : n € Np}, where H,, n € Ny, are the harmonic numbers.
Take n € Ny arbitrarily. Then, applying the definition for forward jump
operators, we find

o(Hy) = inf{Hs,s € Ng:Hs > Hp}

s

1 1
= inf{Hs,seNo:Zk> k}
1

k=1 k=
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Let T = Py 3. Then

T =

If t € [0,1), then, applying the definition for forward jump operators, we

find

(e}

k=0

o(t)

| (8K, 4k + 1]

= inf{seT:s>t}

[0,1] U [4,5] U[8,9] U[12,13]U....

Khaled Zennir

Time Scales Analysis Lecture 4

September 21, 2025

68 /88



If t =1, then

o(l) = inf{seT:s>1}

= 4.
Let now, k € N be arbitrarily chosen. If t € [4k,4k + 1), then we have

o(t) = inf{seT:s>t}
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If t =4k + 1, then

o(t) = inf{seT:s>4k+1}
= 4(k+1)
— 4kt 4
= 4k+1+3

= t+3.
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Therefore

t if te [4k,4k+1)
k=0

t+3 if te U {4k+1}.
k=0
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Let T = C, where C is the Cantor set. We will find o(t) for t € T. For
this aim, let C; denote the set of all left-hand end points of the open
intervals that are removed. Then

m
a 1
k=1

With C, we will denote the set of all right-hand end points of the open
intervals that are removed. We have

m
a 2
C2:{ 3—£+3m+1:m6N, ax € {0,2} for any 1§k§m}.
k=1
Take t € C arbitrarily. We have the following cases.

Let t € (7. Then
= ak 1
“= Z 3k + 3m+l-
k=1
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Hence, we obtain

Let t € (5. Then

Hence,

Khaled Zennir
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Let t € T\(G U ). Then

o(t) = inf{seT:s>t}

Consequently

m
k=1

o(t) =

t if teT\G.
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Let {an}nen, be a sequence of real numbers with o, > 0, and

n—1
t, = Zak, neN,
k=0

and
T = {t,: ne N}

We will find o(t), t € T. Take n € N arbitrarily. Then

n—1

o(ty) = inf XET:s:Zak, s>ty
k=0

n n—1
= Zak = Z+C¥n =ty + ap.
k=0 k=0
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Let .
T:{tn:—n:nEN}UNO.
We will find o(t), t € T. Take n € N arbitrarily. Then
1
n=——
tn
and
. 1
o(t,) = |nf{seT:s:—m,meN,s>to}
_ 1 1 _ tn
o+l Ll -1
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Next, if t € Ng, then

o(t) = inf{seT:s>t}

= t+1.
Consequently

—L if te{th=-1:neN}, t=1,

t+1 if teNp.
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Example

Let

T= {t,, = <%)2 'ne€ No} u{0,1}.

We will find o(t), t € T. Take n € N arbitrarily. Then
o(ty) = inf{iseT:s>t,}

1

G-
- (()) -
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Next,

and

Consequently

(\/f if te{tn:(%)zn:neN}
1 if t=1
o(t) = :
0 if t=0
1 if t=1.

\
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Example

Let U:{z—ln:nEN}and
T=UU(l-U)ul+U)u-U)u(2+ U)u{o,1,2}.

We will find o(t), t € T. We have the following cases.

Let t = 0. Then
o(0)=0
Let t = % Then
1y 3
“\2) 4
Let t = 1. Then
o(l)=1
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Let t = % Then

Let t = 2. Then

Let t = % Then
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Let t € U\ {5}. Then

and

1

e 4

o(t) = 1

Khaled Zennir Time Scales Analysis Lecture 4 September 21, 2025 82/88



Example

Let t € (1+ U)\ {3}. Then

1
Hence, ,
and
2
O'(t) = 1+F:1+§:1+2(t—1):2t—1
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Let t € (2— U)\ {2}. Then
1
and |
2—n:2—t
Hence,
1 1 1 2—t t—|—2
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Example

Let t € (2+ U)\ {3}. Then
1
t:2+§
and 1
Hence,
1 2
O'(t) = 2+F:2+§:2+2(t_2):2(t_1)
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Consequently

(0 if t=0
3 if t=13
1 if t=1
% if t:%

o(t) =

2 if t=2
> if t=3
2t if teU\{3}
tif te(1-UN\{3}

— = = — SaNe;
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2t—1 if te(1+U)\{3}

o(t)=4 H2 if te(-UN{3}

20t—1) if te(+UN\{3}.
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Exercise

Find o(t), t € T, where

@ T=hZ+k h>0, keR.

Q@ T = (—2Np) u 3o,

Q@ T =P37U[4,6].

Q T =11 u/{o0}.

Q@ T =[1,2]U[3,4]U[7,8]U9N.
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