Time Scales Analysis Lecture 5

Definition for Delta Derivative. Rules for Delta Differentiation

Svetlin G. Georgiev

September 24, 2025

Definition

Assume that $f: \mathbb{T} \to \mathbb{R}$ is a function and let $t \in \mathbb{T}^{\kappa}$. We define $f^{\Delta}(t)$ to be the number, provided it exists, with the property that for any $\varepsilon > 0$, there exists a neighbourhood U of t, $U = (t - \delta, t + \delta) \cap \mathbb{T}$ for some $\delta > 0$, such that

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \varepsilon |\sigma(t) - s|$$
 for all $s \in U$.

We call $f^{\Delta}(t)$ the delta or Hilger derivative of f at t. We say that f is delta or Hilger differentiable, shortly differentiable, in \mathbb{T}^{κ} if $f^{\Delta}(t)$ exists for all $t \in \mathbb{T}^{\kappa}$. The function $f^{\Delta} : \mathbb{T} \to \mathbb{R}$ is said to be the delta derivative or Hilger derivative, shortly derivative, of f in \mathbb{T}^{κ} .

If $\mathbb{T} = \mathbb{R}$, then the delta derivative coincides with the classical derivative.

Theorem

The delta derivative is well defined.

Proof.

Let $t\in\mathbb{T}^{\kappa}.$ Suppose $f_{1}^{\Delta}(t)$ and $f_{2}^{\Delta}(t)$ are such that

$$|f(\sigma(t)) - f(s) - f_1^{\Delta}(t)(\sigma(t) - s)| \leq \frac{\varepsilon}{2} |\sigma(t) - s|$$

and

$$|f(\sigma(t)) - f(s) - f_2^{\Delta}(t)(\sigma(t) - s)| \le \frac{\varepsilon}{2} |\sigma(t) - s|$$

for any $\varepsilon>0$ and any s belonging to a neighbourhood U of t, $U=(t-\delta,t+\delta)\cap \mathbb{T}$ for some $\delta>0$. Hence, if $s\neq \sigma(t)$, then

$$|f_{1}^{\Delta}(t) - f_{2}^{\Delta}(t)| = \left| f_{1}^{\Delta}(t) - \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} + \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} - f_{2}^{\Delta}(t) \right|$$

$$\leq \left| f_{1}^{\Delta}(t) - \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} \right| + \left| \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} - f_{2}^{\Delta}(t) \right|$$

$$= \frac{|f(\sigma(t)) - f(s) - f_{1}^{\Delta}(t)(\sigma(t) - s)|}{|\sigma(t) - s|} + \frac{|f(\sigma(t)) - f(s) - f_{2}^{\Delta}(t)(\sigma(t) - s)|}{|\sigma(t) - s|}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $\varepsilon > 0$ was arbitrarily chosen, we conclude that

$$f_1^{\Delta}(t) = f_2^{\Delta}(t).$$

This completes the proof.

Remark

Let us assume that $\sup \mathbb{T} < \infty$ and $f^{\Delta}(t)$ is defined at a point $t \in \mathbb{T} \setminus \mathbb{T}^{\kappa}$ with the same definition as given in Definition 1. Then the unique point $t \in \mathbb{T} \setminus \mathbb{T}^{\kappa}$ is $\sup \mathbb{T}$. Hence, for any $\varepsilon > 0$, there is a neighbourhood $U = (t - \delta, t + \delta) \cap (\mathbb{T} \setminus \mathbb{T}^{\kappa})$, for some $\delta > 0$, such that

$$f(\sigma(t)) = f(s) = f(\sigma(\sup \mathbb{T})) = f(\sup \mathbb{T}), \quad s \in U.$$

Therefore, for any $\alpha \in \mathbb{R}$ and $s \in U$, we have

$$|f(\sigma(t)) - f(s) - \alpha(\sigma(t) - s)| = |f(\sup \mathbb{T}) - f(\sup \mathbb{T}) - \alpha(\sup \mathbb{T} - \sup \mathbb{T})|$$

$$\leq \varepsilon |\sigma(t)-s|,$$

i.e., any $\alpha \in \mathbb{R}$ is the delta derivative of f at the point $t \in \mathbb{T} \setminus \mathbb{T}^{\kappa}$.

Let $f(t) = \alpha \in \mathbb{R}$. We will prove that $f^{\Delta}(t) = 0$ for any $t \in \mathbb{T}^{\kappa}$. Indeed, for $t \in \mathbb{T}^{\kappa}$ and for any $\varepsilon > 0$, $s \in (t - 1, t + 1) \cap \mathbb{T}$ implies

$$|f(\sigma(t)) - f(s) - O(\sigma(t) - s)| = |\alpha - \alpha| = 0 \le \varepsilon |\sigma(t) - s|.$$

Let f(t)=t, $t\in\mathbb{T}$. We will prove that $f^{\Delta}(t)=1$ for any $t\in\mathbb{T}^{\kappa}$. Indeed, for $t\in\mathbb{T}^{\kappa}$ and for any $\varepsilon>0$, $s\in(t-1,t+1)\cap\mathbb{T}$ implies

$$|f(\sigma(t)) - f(s) - 1(\sigma(t) - s)| = |\sigma(t) - s - (\sigma(t) - s)|$$

= $0 \le \varepsilon |\sigma(t) - s|$.

Let $f(t)=t^2$, $t\in\mathbb{T}$. We will prove that $f^{\Delta}(t)=\sigma(t)+t$, $t\in\mathbb{T}^{\kappa}$. Indeed, for $t\in\mathbb{T}^{\kappa}$ and for any $\varepsilon>0$, $s\in(t-\varepsilon,t+\varepsilon)\cap\mathbb{T}$ implies $|t-s|<\varepsilon$ and $|f(\sigma(t))-f(s)-(\sigma(t)+t)(\sigma(t)-s)|=|(\sigma(t))^2-s^2-(\sigma(t)+t)(\sigma(t)-s)|$

$$= |(\sigma(t) - s)(\sigma(t) + s) - (\sigma(t) + t)(\sigma(t) - s)|$$

$$= |\sigma(t) - s||t - s| \le \varepsilon |\sigma(t) - s|.$$

Theorem

Assume $f: \mathbb{T} \to \mathbb{R}$ is a function and let $t \in \mathbb{T}^{\kappa}$. Then we have the following.

- If f is differentiable at t, then f is continuous at t.
- ② If f is continuous at t and t is right-scattered, then f is differentiable at t with

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}.$$

3 If t is right-dense, then f is differentiable at t iff the limit $\lim_{s\to t} \frac{f(t)-f(s)}{t-s}$ exists as a finite number. In this case,

$$f^{\Delta}(t) = \lim_{s \to t} \frac{f(t) - f(s)}{t - s}.$$

If f is differentiable at t, then the "simple useful formula"

$$f(\sigma(t)) = f(t) + \mu(t)f^{\Delta}(t)$$

• Assume that f is differentiable at $t \in \mathbb{T}^{\kappa}$. Let $\varepsilon \in (0,1)$ be arbitrarily chosen. Set

$$\varepsilon^* = \frac{\varepsilon}{1 + |f^{\Delta}(t)| + 2\mu(t)}.$$

Since f is differentiable at t, there exists a neighbourhood U of t such that

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \varepsilon^* |\sigma(t) - s|.$$

Hence, for all $s \in U \cap (t - \varepsilon^*, t + \varepsilon^*)$, we have

$$|f(t) - f(s)| = |f(t) + f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)$$

$$-f(\sigma(t)) + f^{\Delta}(t)(\sigma(t) - s)|$$

$$\leq |f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)|$$

$$+|f(\sigma(t)) - f(t) - f^{\Delta}(t)(\sigma(t) - s)|$$

$$\leq \varepsilon^* |\sigma(t) - s| + |f(\sigma(t)) - f(t) - f^{\Delta}(t)(\sigma(t) - t) + f^{\Delta}(t)(s - t)|$$

$$\leq \varepsilon^* |\sigma(t) - s| + |f(\sigma(t)) - f(t) - f^{\Delta}(t)(\sigma(t) - t)|$$

$$+|f^{\Delta}(t)||s - t|$$

$$= \varepsilon^* \left(|\sigma(t) - s| + \mu(t) + |f^{\Delta}(t)| \right)$$

$$= \varepsilon^* \left(|\sigma(t) - t + t - s| + \mu(t) + |f^{\Delta}(t)| \right)$$

$$\leq \varepsilon^* \left(\sigma(t) - t + |t - s| + \mu(t) + |f^{\Delta}(t)| \right)$$

$$= \varepsilon^* \left(2\mu(t) + |t - s| + |f^{\Delta}(t)| \right)$$

$$\leq \varepsilon^* (2\mu(t) + \varepsilon^* + |f^{\Delta}(t)|) \leq \varepsilon^* (1 + 2\mu(t) + |f^{\Delta}(t)|) = \varepsilon,$$

which completes the proof.

 Assume that f is continuous at t and t is right-scattered. By continuity, we have

$$\lim_{s \to t} \frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$
$$= \frac{f(\sigma(t)) - f(t)}{\mu(t)}.$$

Therefore, for any $\varepsilon > 0$, there exists a neighbourhood U of t such that

$$\left|\frac{f(\sigma(t)) - f(s)}{\sigma(t) - s} - \frac{f(\sigma(t)) - f(t)}{\mu(t)}\right| \le \varepsilon$$

for all $s \in U$, i.e.,

$$\left|f(\sigma(t)) - f(s) - \frac{f(\sigma(t)) - f(t)}{\mu(t)}(\sigma(t) - s)\right| \leq \varepsilon |\sigma(t) - s|$$

for all $s \in U$. Hence,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}.$$

• Assume that t is right-dense. Let $\varepsilon > 0$ be arbitrarily chosen. Then f is differentiable at t iff there is a neighbourhood U of t such that

$$|f(t)-f(s)-f^{\Delta}(t)(t-s)| \leq \varepsilon |t-s|$$
 for all $s \in U$,

i.e., iff

$$\left| \frac{f(t) - f(s)}{t - s} - f^{\Delta}(t) \right| \le \varepsilon \quad \text{for all} \quad s \in U,$$

i.e., iff
$$\lim_{s\to t} \frac{f(t)-f(s)}{t-s} = f^{\Delta}(t)$$
.

- Assume that f is differentiable at t.
 - **1** If t is right-dense, then $\sigma(t) = t$, $\mu(t) = 0$ and

$$f(\sigma(t)) = f(t) = f(t) + \mu(t)f^{\Delta}(t).$$

2 If t is right-scattered, then

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)},$$

whereupon

$$f(\sigma(t)) = f(t) + \mu(t)f^{\Delta}(t).$$

This completes the proof.

Let

$$\mathbb{T} = \left\{ \frac{1}{2n+1} : n \in \mathbb{N}_0 \right\} \cup \{0\}$$

and $f(t)=\sigma(t)$ for $t\in\mathbb{T}.$ We will find $f^{\Delta}(t)$ for $t\in\mathbb{T}^{\kappa}=\mathbb{T}\setminus\{1\}.$ For

$$t \in \mathbb{T}^{\kappa} \setminus \{0\}, \quad t = \frac{1}{2n+1}, \quad n = \frac{1-t}{2t}, \quad n \in \mathbb{N},$$

we have

$$\sigma(t) = \inf \left\{ s \in \mathbb{T} : s > \frac{1}{2n+1} \right\} = \frac{1}{2n-1}$$
$$= \frac{1}{2^{\frac{1-t}{2t}} - 1} = \frac{t}{1-2t} > t,$$

i.e., any point $t = \frac{1}{2n+1}$, $n \in \mathbb{N}$, is right-scattered. At these points,

401481471717

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$

$$= \frac{\sigma(\sigma(t)) - \sigma(t)}{\sigma(t) - t}$$

$$= 2\frac{(\sigma(t))^{2}}{(1 - 2\sigma(t))(\sigma(t) - t)}$$

$$= 2\frac{\left(\frac{t}{1 - 2t}\right)^{2}}{\left(1 - \frac{2t}{1 - 2t}\right)\left(\frac{t}{1 - 2t} - t\right)}$$

$$= 2\frac{\frac{t^{2}}{(1 - 2t)^{2}}}{\frac{1 - 4t}{1 - 2t}} = 2\frac{t^{2}}{2t^{2}(1 - 4t)} = \frac{1}{1 - 4t}.$$

Let now t = 0. Then

$$\sigma(0)=\inf\left\{s\in\mathbb{T}:\ s>0\right\}=0.$$

Consequently, t = 0 is right-dense. Also,

$$\lim_{h \to 0} \frac{\sigma(h) - \sigma(0)}{h} = \lim_{h \to 0} \frac{\frac{h}{1 - 2h} - 0}{h} = \lim_{h \to 0} \frac{1}{1 - 2h} = 1.$$

Therefore, $f^{\Delta}(0) = 1$. Altogether, $f^{\Delta}(t) = \frac{1}{1-4t}$ for all $t \in \mathbb{T}^{\kappa}$.

Let $\mathbb{T}=\{n^2:n\in\mathbb{N}_0\}$ and $f(t)=t^2$, $g(t)=\sigma(t)$ for $t\in\mathbb{T}$. We will find $f^{\Delta}(t)$ and $g^{\Delta}(t)$ for $t\in\mathbb{T}^{\kappa}=\mathbb{T}$. For $t\in\mathbb{T}$, $t=n^2$, $n=\sqrt{t}$, $n\in\mathbb{N}_0$, we have

$$\sigma(t) = \inf\{l^2: l^2 > n^2, l \in \mathbb{N}_0\} = (n+1)^2 = (1+\sqrt{t})^2 > t.$$

Therefore, all points of \mathbb{T} are right-scattered. We note that f and g are continuous functions in \mathbb{T} . Hence,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$

$$= \frac{(\sigma(t))^2 - t^2}{\sigma(t) - t}$$

$$= \sigma(t) + t$$

$$= (1 + \sqrt{t})^2 + t$$

$$= t + 2\sqrt{t} + 1 + t$$

$$= 1 + 2\sqrt{t} + 2t$$

and

$$g^{\Delta}(t) = \frac{g(\sigma(t)) - g(t)}{\sigma(t) - t}$$

$$= \frac{\sigma(\sigma(t)) - \sigma(t)}{\sigma(t) - t}$$

$$= \frac{(1 + \sqrt{\sigma(t)})^2 - \sigma(t)}{\sigma(t) - t}$$

$$= \frac{\sigma(t) + 2\sqrt{\sigma(t)} + 1 - \sigma(t)}{\sigma(t) - t}$$

$$= \frac{1 + 2\sqrt{\sigma(t)}}{\sigma(t) - t}$$

$$= \frac{1 + 2(1 + \sqrt{t})}{(1 + \sqrt{t})^2 - t} = \frac{3 + 2\sqrt{t}}{1 + 2\sqrt{t}}.$$

Let
$$\mathbb{T}=\left\{\sqrt[4]{2n+1}:n\in\mathbb{N}_0\right\}$$
 and $f(t)=t^4$ for $t\in\mathbb{T}$. We will find $f^{\Delta}(t)$ for $t\in\mathbb{T}$. For $t\in\mathbb{T}$, $t=\sqrt[4]{2n+1}$, $n=\frac{t^4-1}{2}$, $n\in\mathbb{N}_0$, we have

$$\sigma(t) = \inf\{\sqrt[4]{2l+1} : \sqrt[4]{2l+1} > \sqrt[4]{2n+1}, \ l \in \mathbb{N}_0\}$$
$$= \sqrt[4]{2n+3} = \sqrt[4]{t^4+2} > t.$$

Therefore, every point of \mathbb{T} is right-scattered. We note that the function f is continuous in \mathbb{T} . Hence,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$

$$= \frac{(\sigma(t))^4 - t^4}{\sigma(t) - t}$$

$$= (\sigma(t))^3 + t(\sigma(t))^2 + t^2\sigma(t) + t^3$$

$$= \sqrt[4]{(t^4 + 2)^3} + t^2\sqrt[4]{t^4 + 2} + t\sqrt{t^4 + 2} + t^3.$$

Let $\mathbb{T}=\mathbb{Z}$ and f be differentiable at t. Note that all points of t are right-scattered and $\sigma(t)=t+1$. Therefore,

$$f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\sigma(t) - t}$$

$$= \frac{f(t+1) - f(t)}{t+1-t}$$

$$= f(t+1) - f(t)$$

$$= \Delta f(t),$$

where Δ is the usual forward difference operator.

Theorem

Assume $f,g:\mathbb{T}\to\mathbb{R}$ are differentiable at $t\in\mathbb{T}^\kappa$. Then we have the following.

- The sum $f + g : \mathbb{T} \to \mathbb{R}$ is differentiable at t with $(f + g)^{\Delta}(t) = f^{\Delta}(t) + g^{\Delta}(t)$.
- ② For any constant α , $\alpha f : \mathbb{T} \to \mathbb{R}$ is differentiable at t with $(\alpha f)^{\Delta}(t) = \alpha f^{\Delta}(t)$.

• Let $\varepsilon > 0$ be arbitrarily chosen. Since f and g are differentiable at t, there exist neighbourhoods U_1 and U_2 of t so that

$$|f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)|\leq rac{arepsilon}{2}|\sigma(t)-s| \quad ext{for all} \quad s\in \mathit{U}_1$$

and

$$|g(\sigma(t))-g(s)-g^{\Delta}(t)(\sigma(t)-s)|\leq rac{arepsilon}{2}|\sigma(t)-s| \quad ext{for all} \quad s\in U_2.$$

Hence, for $s \in U_1 \cap U_2$, we have

$$egin{aligned} |f(\sigma(t))+g(\sigma(t))-f(s)-g(s)-(f^{\Delta}(t)+g^{\Delta}(t))(\sigma(t)-s)| \ &\leq &|f(\sigma(t))-f(s)-f^{\Delta}(t)(\sigma(t)-s)| \ &+|g(\sigma(t))-g(s)-g^{\Delta}(t)(\sigma(t)-s)| \end{aligned}$$

$$\leq \frac{\varepsilon}{2}|\sigma(t)-s|+\frac{\varepsilon}{2}|\sigma(t)-s|$$
 $= \varepsilon|\sigma(t)-s|,$

which completes the proof.

① Let $\alpha \neq 0$. Assume that $\varepsilon > 0$ is arbitrarily chosen. Since f is differentiable at t, there exists a neighbourhood U of t such that

$$|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)| \le \frac{\varepsilon}{|\alpha|} |\sigma(t) - s|$$
 for all $s \in U$.

Hence, for $s \in U$, we have

$$|\alpha f(\sigma(t)) - \alpha f(s) - \alpha f^{\Delta}(t)(\sigma(t) - s)|$$

$$= |\alpha||f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)|$$

$$\leq |\alpha| \frac{\varepsilon}{|\alpha|} = \varepsilon,$$

which completes the proof.

