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Definition

A function f : T → R is called regulated provided its right-sided limits
exist (finite) at all right-dense points in T and its left-sided limits exist
(finite) at all left-dense points in T.

Example

Let T = N and

f (t) =
t2

t − 1
, g(t) =

t

t + 1
, t ∈ T.

We note that all points of T are right-scattered. The points t ∈ T, t ̸= 1,
are left-scattered. Also, limt→1− f (t) is not finite and limt→1− g(t) exists
and it is finite. Therefore, the function f is not regulated and the function
g is regulated.
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Example

Let T = R and

f (t) =


1
t for t ∈ R \ {0}

0 for t = 0.

We have that all points of T are dense and limt→0− f (t), limt→0+ f (t) are
not finite. Therefore, the function f is not regulated.
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Definition

A continuous function f : T → R is called pre-differentiable with (region of
differentiation) D, provided

1 D ⊂ Tκ,

2 Tκ \ D is countable and contains no right-scattered elements of T,
3 f is differentiable at each t ∈ D.

Example

Let T = Pa,b =
⋃∞

k=0[k(a+ b), k(a+ b) + a] for a > b > 0. Define
f : T → R by

f (t) =


0 if t ∈

⋃∞
k=0[k(a+ b), k(a+ b) + b]

t − (a+ b)k − b if t ∈ [(a+ b)k + b, (a+ b)k + a].

Then f is pre-differentiable with D = T \
⋃∞

k=0{(a+ b)k + b}.
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Example

Let T = R and

f (t) =


1

t−3 if R \ {3}

0 if t = 3.

Since f : T → R is not continuous at t = 3, the function f is not
pre-differentiable.

Example

Let T = N0
⋃{

1− 1
n : n ∈ N

}
and

f (t) =


0 if t ∈ N

t otherwise.

Since f is not continuous at t = 1, it is not pre-differentiable.
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Definition

A function f : T → R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T. The set of rd-continuous functions f : T → R is denoted by
Crd or Crd(T) or Crd(T,R). The set of functions f : T → R that are
differentiable and whose derivative is rd-continuous is denoted by C1

rd(T).

Some results concerning rd-continuous and regulated functions are
contained in the following theorem. Since its statements follow directly
from the definitions, we leave the proofs to the reader.
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Theorem

Assume f : T → R.
1 If f is continuous, then f is rd-continuous.

2 If f is rd-continuous, then f is regulated.

3 The jump operator σ is rd-continuous.

4 If f is regulated or rd-continuous, then so is f σ.

5 Assume f is continuous. If g : T → R is regulated or rd-continuous,
then f ◦ g has that property.
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Theorem

Every regulated function on a compact interval is bounded.

Proof.

Assume that f : [a, b] → R, [a, b] ⊂ T, is unbounded. Then, for each
n ∈ N, there exists tn ∈ [a, b] such that |f (tn)| > n. Because
{tn}n∈N ⊂ [a, b], there exists a subsequence {tnk}k∈N ⊂ {tn}n∈N such that

lim
k→∞

tnk = t0.

Since T is closed, we have that t0 ∈ T. Also, t0 is a right-dense point or a
left-dense point. Using that f is regulated, we get∣∣∣∣ limk→∞

f (tnk )

∣∣∣∣ ̸= ∞,

which is a contradiction.
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Theorem (Mean Value Theorem)

If f , g : T → R are pre-differentiable with D, then

|f ∆(t)| ≤ |g∆(t)| for all t ∈ D

implies

|f (s)− f (r)| ≤ g(s)− g(r) for all r , s ∈ T, r ≤ s. (1)

Proof.

Let r , s ∈ T with r ≤ s. Assume also

[r , s) \ D = {tn : n ∈ N}.

We take ε > 0. We consider the statements

S(t) : |f (t)− f (r)| ≤ g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

for t ∈ [r , s].Svetlin G. Georgiev Time Scales Analysis Lecture 8 October 3, 2025 9 / 123



Proof.

We will prove, using the induction principle, that S(t) is true for all
t ∈ [r , s].
Since 0 ≤ ε

∑
tn<t 2

−n, the statement S(r) is true.
Let t ∈ [r , s] be right-scattered and assume that S(t) is true. Then we
have

|f (σ(t))− f (r)| = |f (t) + µ(t)f ∆(t)− f (r)

≤ µ(t)|f ∆(t)|+ |f (t)− f (r)|

≤ µ(t)|f ∆(t)|+ g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

≤ µ(t)g∆(t) + g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)
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Proof.

≤ g(σ(t))− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

< g(σ(t))− g(r) + ε

σ(t)− r +
∑

tn<σ(t)

2−n


since t < σ(t). Hence, S(σ(t)) is true. Let t ∈ [r , s) be right-dense. Let
t ∈ D. Then f and g are differentiable at t. Hence, there exists a
neighbourhood U of t such that

|f (t)− f (τ)− f ∆(t)(t − τ)| ≤ ε

2
|t − τ |

and
|g(t)− g(τ)− g∆(t)(t − τ)| ≤ ε

2
|t − τ |

for all τ ∈ U.
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Proof.

Thus,

|f (t)− f (τ)| ≤
(
|f ∆(t)|+ ε

2

)
|t − τ |

for all τ ∈ U and

g(τ)− g(t) + g∆(t)(t − τ) ≥ −ε

2
|t − τ |

for all τ ∈ U, i.e.,

g(τ)− g(t)− g∆(t)(τ − t) ≥ −ε

2
|t − τ |

for all τ ∈ U. Hence, for all τ ∈ U ∩ (t,∞), we have
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Proof.

|f (τ)− f (r)| = |f (τ)− f (t) + f (t)− f (r)|

≤ |f (τ)− f (t)|+ |f (t)− f (r)|

≤
(
|f ∆(t)|+ ε

2

)
|t − τ |+ g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

≤
(
g∆(t) +

ε

2

)
|t − τ |+ g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

= g∆(t)(τ − t) +
ε

2
(τ − t) + g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)
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Proof.

≤ g(τ)− g(T ) +
ε

2
|t − τ |+ ε

2
(τ − t) + g(t)− g(r)

+ε

(
t − r +

∑
tn<t

2−n

)

= g(τ)− g(r) + ε(τ − t) + ε

(
t − r +

∑
tn<t

2−n

)

= g(τ)− g(r) + ε

(
τ − r +

∑
tn<t

2−n

)
.

Therefore, S(τ) is true for all τ ∈ U ∩ (t,∞).
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Proof.

Let t ̸∈ D. Then t = tm for some m ∈ N. Since f and g are
pre-differentiable, they both are continuous. Therefore, there exists a
neighbourhood U of t such that

|f (τ)− f (t)| ≤ ε

2
2−m for all τ ∈ U

and
|g(τ)− g(t)| ≤ ε

2
2−m for all τ ∈ U.

Therefore,
g(τ)− g(t) ≥ −ε

2
2−m for all τ ∈ U.

Consequently,
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Proof.

|f (τ)− f (r)| = |f (τ)− f (t) + f (t)− f (r)|

≤ |f (τ)− f (t)|+ |f (t)− f (r)|

≤ ε

2
2−m + g(t)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

≤ ε

2
2−m + g(τ) +

ε

2
2−m − g(r) + ε

(
t − r +

∑
tn<t

2−n

)

= ε2−m + g(τ)− g(r) + ε

(
t − r +

∑
tn<t

2−n

)

≤ ε2−m + g(τ)− g(r) + ε

(
τ − r +

∑
tn<τ

2−n

)
,
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Proof.

so S(τ) is true for all τ ∈ U ∩ (t,∞).
Let t be left-dense and assume that S(τ) is true for τ ∈ [r , t). Then

lim
τ→t−

|f (τ)− f (r)| ≤ lim
τ→t−

{
g(τ)− g(r) + ε

(
τ − r +

∑
tn<τ

2−n

)}

≤ lim
τ→t−

{
g(τ)− g(r) + ε

(
τ − r +

∑
tn<t

2−n

)}

implies that S(t) is true since f and g are continuous at t.
Thus, using the induction principle, if follows that S(t) is true for all
t ∈ [r , s]. Consequently, (1) holds for all r ≤ s, r , s ∈ T.
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Theorem

Suppose f : T → R is pre-differentiable with D. If U is a compact interval
with endpoints r , s ∈ T, then

|f (s)− f (r)| ≤
{

sup
t∈Uκ∩D

|f ∆(t)|
}
|s − r |.

Proof.

Without loss of generality, we suppose that r ≤ s. We set

g(t) =

{
sup

τ∈Uκ∩D
|f ∆(τ)|

}
(t − r), t ∈ T.

Then
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Proof.

g∆(t) =

{
sup

τ∈Uκ∩D
|f ∆(τ)|

}
≥ |f ∆(t)|

for all t ∈ D ∩ [r , s]κ. Thus, using Theorem 11, we obtain

|f (t)− f (r)| ≤ g(t)− g(r) for all t ∈ [r , s],

whereupon

|f (s)− f (r)| ≤ g(s)− g(r) = g(s) =

{
sup

t∈Uκ∩D
|f ∆(t)|

}
(s − r).
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Theorem

Let f be pre-differentiable with D. If f ∆(t) = 0 for all t ∈ D, then f is a
constant function.

Proof.

Let U be a compact interval with endpoints r , s ∈ T. From Theorem 12, it
follows that for all r , s ∈ T,

|f (s)− f (r)| ≤
{

sup
t∈Uκ∩D

|f ∆(t)|
}
|s − r | = 0,

i.e., f (s) = f (r). Therefore, f is a constant function.
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Theorem

Let f and g be pre-differentiable with D. If f ∆(t) = g∆(t) for all t ∈ D,
then

g(t) = f (t) + C for all t ∈ T,

where C is a constant.

Proof.

Let h(t) = f (t)− g(t), t ∈ T. Then

h∆(t) = f ∆(t)− g∆(t) = 0 for all t ∈ D.

Thus, using Theorem 13, it follows that h is a constant function.
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Theorem

Suppose fn : T → R is pre-differentiable with D for each n ∈ N. Assume
that for each t ∈ Tκ, there exists a compact interval neighbourhood U(t)
such that the sequence {f ∆n }n∈N converges uniformly on U(t) ∩ D.

i If {fn}n∈N converges at some t0 ∈ U(t) for some t ∈ Tκ, then it
converges uniformly on U(t).

ii If {fn}n∈N converges at some t0 ∈ T, then it converges uniformly on
U(t) for all t ∈ Tκ.

iii The limit mapping f = limn→∞ fn is pre-differentiable with D and

f ∆(t) = lim
n→∞

f ∆n (t) for all t ∈ D.
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Proof.

i] Since {f ∆n }n∈N converges uniformly on U(t) ∩ D, there exists N ∈ N
such that

sup
s∈U(t)∩D

|(fm − fn)
∆(s)|

is finite for all m, n ∈ N. Let m, n ≥ N and r ∈ U(t). Then

|fn(r)− fm(r)| = |fn(r)− fm(r)− (fn(t0)− fm(t0)) + (fn(t0)− fm(t0))|

≤ |fn(t0)− fm(t0)|+

{
sup

s∈U(t)∩D
|(fn − fm)

∆(s)|

}
|r − t0|.

Hence, {fn}n∈N converges uniformly on U(t), i.e., {fn}n∈N is a locally
uniformly convergent sequence.
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ii.

Assume {fn(t0)}n∈N converges for some t0 ∈ T. Consider the statement

S(t) : {fn(t)}n∈N converges.

Since {fn(t0)} converges, the statement S(t0) is true. Let t be
right-scattered and assume that S(t) is true. Then

fn(σ(t)) = fn(t) + µ(t)f ∆n (t)

converges by the assumption, i.e., S(σ(t)) is true. Let t be right-dense and
assume that S(t) is true. Then, by i, {fn}n∈N converges on U(t), and so
S(r) is true for all r ∈ U(t) ∩ (t,∞). Let t be left-dense and assume that
S(r) is true for all t0 ≤ r < t. Since U(t) ∩ [t0, t) ̸= ∅, using again part i,
we have that {fn}n∈N converges on U(t); in particular, S(t) is true.
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Proof.

Consequently, S(t) is true for all t ∈ [t0,∞). Using the dual version of the
induction principle for the negative direction, we have that S(t) is also true
for all t ∈ (−∞, t0] (we note that the first part of this has already been
shown, the second part follows by fn(ρ(t)) = fn(t)− µ(ρ(t))f ∆n (ρ(t)), the
third part and the fourth part follow again by i). [iii] Let t ∈ D. Without
loss of generality, we can assume that σ(t) ∈ U(t). We take ε > 0
arbitrarily. Using i, there exists N ∈ N such that

|(fn − fm)(r)− (fn − fm)(σ(t))| ≤

{
sup

s∈U(t)∩D
|(fn − fm)

∆(s)|

}
|r − σ(t)|

for all r ∈ U(t) and all m, n ≥ N. Since
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Proof.

{f ∆n }n∈N
converges uniformly on U(t) ∩ D, there exists N1 ≥ N such that

sup
s∈U(t)∩D

|(fn − fm)
∆(s)| ≤ ε

3
for all m, n ≥ N1.

Hence,
|(fn − fm)(r)− (fn − fm)(σ(t))| ≤

ε

3
|r − σ(t)|

for all r ∈ U(t) and for all m, n ≥ N1. Now, letting m → ∞, we obtain

|(fn − f )(r)− (fn − f )(σ(t))| ≤ ε

3
|r − σ(t)|

for all r ∈ U(t) and all n ≥ N1. Let

g = lim
n→∞

f ∆n .

Then there exists M ≥ N1 such that
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Proof.

|f ∆M (t)− g(t)| ≤ ε

3
,

and since fM is differentiable at t, there also exists a neighbourhood W of
t with

|fM(σ(t))− fM(r)− f ∆M (t)(σ(t)− r)| ≤ ε

3
|σ(t)− r |

for all r ∈ W . From here, for all r ∈ U(t) ∩W , we get

|f (σ(t))− f (r)− g(t)|σ(t)− r || ≤ |(fM − f )(σ(t))− (fM − f )(r)|

+|f ∆M (t)− g(t)||σ(t)− r |+ |fM(σ(t))− fM(r)− f ∆M (t)|σ(t)− r ||

≤ ε

3
|σ(t)− r |+ ε

3
|σ(t)− r |+ ε

3
|σ(t)− r |

= ε|σ(t)− r |.

Consequently, f is differentiable at t with f ∆(t) = g(t).
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Theorem

Let t0 ∈ T, x0 ∈ R. Assume f : Tκ → R is regulated. Then there exists
exactly one pre-differentiable function f with D satisfying

F∆(t) = f (t) for all t ∈ D, F (t0) = x0.

Proof.

Let n ∈ N and consider the statement

S(t) :


there exists a pre-differentiable (Fnt ,Dnt),

Fnt : [t0, t] → R with Fnt(t0) = x0 and

|F∆
nt (s)− f (s)| ≤ 1

n for s ∈ Dnt .
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Proof.

Let t = t0, Dnt0 = ∅ and Fnt0(t0) = x0. Then the statement S(t0) is true.
Let t be right-scattered and assume that S(t) is true. Define

Dnσ(t) = Dnt ∪ {t}

and Fnσ(t) on [t0, σ(t)] by

Fnσ(t)(s) =


Fnt(s) if s ∈ [t0, t]

Fnt(t) + µ(t)f (t) if s = σ(t).

Then
Fnσ(t)(t0) = Fnt(t0) = x0,∣∣∣F∆

nσ(t)(s)− f (s)
∣∣∣ = ∣∣∣F∆

nt (s)− f (s)
∣∣∣ ≤ 1

n
for s ∈ Dnt ,

and
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Proof.

∣∣∣F∆
nσ(t)(t)− f (t)

∣∣∣ =

∣∣∣∣Fnσ(t)(σ(t))− Fnσ(t)(t)

µ(t)
− f (t)

∣∣∣∣
=

∣∣∣∣Fnt(t) + µ(t)f (t)− Fnσ(t)(t)

µ(t)
− f (t)

∣∣∣∣
=

∣∣∣∣Fnt(t) + µ(t)f (t)− Fnt(t)

µ(t)
− f (t)

∣∣∣∣
=

∣∣∣∣µ(t)f (t)µ(t)
− f (t)

∣∣∣∣
= 0

≤ 1

n
,

and therefore the statement S(σ(t)) is true.
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Proof.

Let t be right-dense and assume that S(t) is true. Since t is right-dense
and f is regulated,

f (t+) = lim
s→t,s>t

f (s) exists.

Hence, there exists a neighbourhood U of t with

|f (s)− f (t+)| ≤ 1

n
for all s ∈ U ∩ (t,∞). (2)

Let r ∈ U ∩ (t,∞). Define Dnr = (Dnt \ {t}) ∪ [t, r ]κ and Fnr on [t0, r ] by

Fnr (s) =


Fnt(s) if s ∈ [t0, t]

Fnt(t) + f (t+)(s − t) if s ∈ (t, r ].
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Proof.

Then Fnr is continuous at t and hence on [t0, r ]. Also, Fnr is differentiable
on (t, r ]κ with

F∆
nr (s) = f (t+) for all s ∈ (t, r ]κ.

Hence, Fnr is pre-differentiable on [t0, t). Since t is right-dense, we have
that Fnr is pre-differentiable with Dnr . From here and from (2), we also
have

|F∆
nr (s)− f (s)| ≤ 1

n
for all s ∈ Dnr .

Therefore, the statement S(r) is true for all r ∈ U ∩ (t,∞). Now, let t be
left-dense and suppose that S(r) is true for r < t. Since f is regulated,

f (t−) = lim
s→t,s<t

f (s) exists. (3)
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Proof.

Hence, there exists a neighbourhood U of t with

|f (s)− f (t−)| ≤ 1

n
for all s ∈ U ∩ (−∞, t).

Fix some r ∈ U ∩ (−∞, t) and define

Dnt =


Dnr ∪ (r , t) if r is right-dense

Dnr ∪ [r , t) if r is right-scattered

and Fnt on [t0, t] by

Fnt(s) =


Fnr (s) if s ∈ (t0, r ]

Fnr (t) + f (t−)(s − r) if s ∈ (r , t].
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Proof.

We note that Fnt is continuous at r and hence in [t0, t]. Since

F∆
nt (s) = f (t−) for all s ∈ (r , t],

Fnt is pre-differentiable with Dnt and

|F∆
nt (s)− f (s)| ≤ 1

n
for all s ∈ Dnt .

Hence, the statement S(t) is true.
By the induction principle, it follows that S(t) is true for all t ≥ t0,
t ∈ T.
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Proof.

Similarly, we can show that S(t) is valid for t ≤ t0. Hence, Fn is
pre-differentiable with Dn, Fn(t0) = x0, and

|F∆
n (t)− f (t)| ≤ 1

n
for all t ∈ Dn.

Now, let
F = lim

n→∞
Fn and D =

⋂
n∈N

Dn.

Then F (t0) = x0, f is pre-differentiable on D, and, using Theorem 15,

F∆(t) = lim
n→∞

F∆
n (t) = f (t) for all t ∈ D.
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