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Definition

A function f : T — R is called regulated provided its right-sided limits
exist (finite) at all right-dense points in T and its left-sided limits exist
(finite) at all left-dense points in T.

Let T =N and

t2 t

f(t) = g(t):m, teT.

We note that all points of T are right-scattered. The points t € T, t # 1,
are left-scattered. Also, lim¢—,1_ f(t) is not finite and lim;_,;_ g(t) exists
and it is finite. Therefore, the function f is not regulated and the function
g is regulated.
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Let T =R and
: for teR\ {0}
f(t) =
0 for t=0.

We have that all points of T are dense and lim;_,o_ f(t), lim;_o4 f(t) are
not finite. Therefore, the function f is not regulated.
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Definition
A continuous function f : T — R is called pre-differentiable with (region of
differentiation) D, provided

Q@ DCTx,

@ T*\ D is countable and contains no right-scattered elements of T,

© f is differentiable at each t € D.

Let T = P, = Up_olk(a+ b), k(a+ b) + a] for a > b > 0. Define
f:T—Rby

0 if teUrglk(a+ b),k(a+ b)+ b]
F(t) =
t—(a+b)k—b if tel(a+b)k+b,(a+b)k+ al

Then f is pre-differentiable with D = T \ ;2 ,{(a + b)k + b}.
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Example
Let T =R and

2= if R\ {3}
f(t) =
0 if t=3.

Since f : T — R is not continuous at t = 3, the function f is not
pre-differentiable.

Example
Let T=NoJ{1-1:neN} and

0 if teN
f(t) =

t otherwise.

Since f is not continuous at t = 1, it is not pre-differentiable.
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Definition

A function f : T — R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense
points in T. The set of rd-continuous functions f : T — R is denoted by
Crq or Cyq(T) or Crq(T,R). The set of functions f : T — R that are

differentiable and whose derivative is rd-continuous is denoted by CZ,(T).

Some results concerning rd-continuous and regulated functions are
contained in the following theorem. Since its statements follow directly
from the definitions, we leave the proofs to the reader.
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Assume f : T — R.
@ Iff is continuous, then f is rd-continuous.
@ If f is rd-continuous, then f is regulated.
© The jump operator o is rd-continuous.
©Q If f is regulated or rd-continuous, then so is f°.

© Assume f is continuous. If g : T — R is regulated or rd-continuous,
then f o g has that property.
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Every regulated function on a compact interval is bounded.

Assume that f : [a, b] = R, [a, b] C T, is unbounded. Then, for each
n € N, there exists t, € [a, b] such that |f(t,)| > n. Because
{tn}nen C [a, b], there exists a subsequence {tn, }ken C {tn}nen such that

lim th, = to.
k—00

Since T is closed, we have that tyg € T. Also, tg is a right-dense point or a
left-dense point. Using that f is regulated, we get

#OO7

lim f(t,
!k;";o (tn)

which is a contradiction. OJ
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Theorem (Mean Value Theorem)

If f,g: T — R are pre-differentiable with D, then
IFA(t)| < |g2(t)| forall teD
implies

|f(s)—f(r)| < g(s)—g(r) forall r,seT, r<s. (1)

Let r,s € T with r <s. Assume also
[r,s)\ D= {t,: ne N}

We take € > 0. We consider the statements

S(t): |F(t) — F(r)| < g(t) — g(r) +¢ <t —r+ >y 2">

th<t
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We will prove, using the induction principle, that S(t) is true for all
telrs)].

Since 0 <€), _,27", the statement S(r) is true.

Let t € [r, s] be right-scattered and assume that S(t) is true. Then we
have

(o)) = F(N] = IF(t) +u(t)f2(t) — £(r)

< u(®)IFA(E)] + £ () = £(r)]

< u()IFA()] +g(t) —g(r) +e (t —r+) 2‘”)

th<t

IA

u(t)gA(t) +g(t)—g(r)+¢ <t —r+ Z 2—n)
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< g(o(t)) —g(r)+e|o(t)—r+

since t < o(t). Hence, S(o(t)) is true. Let t € [r,s) be right-dense. Let
t € D. Then f and g are differentiable at t. Hence, there exists a

neighbourhood U of t such that

o

th<o(t)

€
() = f(r) = FA()(t = 7)| < S lt — 7]
and -
lg(t) — g(r) — g (t)(t = 7)| < St — 7]
for all 7 € U. O
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Thus,
I#() = F() < (1P + ) le =]
for all 7 € U and
g(r) —g(t) + g2 (t)(t —7) = —[t— 7
forall 7 € U, ie.,

g(r) —g(t) — g2(t)(r — t) = —S|t =]

for all 7 € U. Hence, for all 7 € U N (t,00), we have []
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f(7) = F()l = [f(7) = £(2) + £(z) — £(r)|

IA

f(7) = F(®) + |F(2) = F(r)|

IA

(lfA(r)|+ )|t—7]+g(t) (,)+g(t_r+22n>

th<t

IN

( (t) + )\t—7\+g(t) g(r) +€<t_,+22_n)

th<t

= g®t)(r-1t)+ %(7’ —t)+g(t)—g(r)+e <t —r+ Z 2_”)

th<t

Ol
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= g(T)—g(r)+s(T—t)+5(t—r—i—ZZ">

= g(T)—g(r)—l—es(T—r—i—ZZ").

Therefore, S(7) is true for all 7 € U N (t,00). O
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Let t € D. Then t = t,, for some m € N. Since f and g are
pre-differentiable, they both are continuous. Therefore, there exists a
neighbourhood U of t such that

(1) — F(t)] < gz—m forall 7€ U

and )
g(r) —g(t) < 527" forall 7€ U.

Therefore, i
g(r) —g(t) > —527’" forall 7€ U.

Consequently, -
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F() — F()] =

IA

IN

IN

<

Svetlin G. Georgiev

[f(7) = f(2) + () — £(r)|

() — (&) + £ (2) — F(r)]
gz—m +g(t)—g(r) +¢ <t —r+y 2—">
%2_"’ +g(1)+ %2_’" —g(r)+e (t —r+ Z 2_">

27"+ g(r)—g(r)+e¢ <t —r+ Z 2”)

th<t

e27"+g(r)—g(r)+e¢ <T —r+ Z 2‘”) ,

th<T
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so S(7) is true for all 7 € UN (¢, 0).
Let t be left-dense and assume that S(7) is true for 7 € [r,t). Then

im [f(r) ~ £(r)] < Tgn;_{gm—g(r)w(T—r+22—">}

th<T

7—I_i>nt1_ {g(T)_g(r)+E (T—r_|_ Zzn)}

th<t

IN

implies that S(t) is true since f and g are continuous at t.
Thus, using the induction principle, if follows that S(t) is true for all
t € [r,s]. Consequently, (1) holds for all r <'s, r,s € T. O
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Suppose f : T — R is pre-differentiable with D. If U is a compact interval
with endpoints r,s € T, then

1F(s) — £(7) s{ g |fA(t)|}|sr|.

teUrsnD

Without loss of generality, we suppose that r < s. We set

g0={ s [2oIfe-n, tem

TeU=ND

Then L]
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g2(t) = { e rf%n} > |FA(1)

TeU~ND

for all t € DN [r,s]®. Thus, using Theorem 11, we obtain

[f(t) —f(r)] < g(t)—g(r) forall telrs],

whereupon

1F(s) — ()] < &(s) — &(r) = &(5) = { s |fA<r)|} (s—r).
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Let f be pre-differentiable with D. If f2(t) =0 for all t € D, then f is a
constant function.

.

Let U be a compact interval with endpoints r,s € T. From Theorem 12, it
follows that for all r,s € T,

)= < { s I8} 15 rl =0

t

i.e., f(s) = f(r). Therefore, f is a constant function. O
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Let f and g be pre-differentiable with D. If f2(t) = g®(t) for all t € D,
then

g(t)y=1f(t)+ C forall teT,

where C is a constant.

Let h(t) = f(t) — g(t), t € T. Then

hA(t) = fA(t) —g®(t) =0 forall teD.

Thus, using Theorem 13, it follows that h is a constant function. Ol
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Suppose f, : T — R is pre-differentiable with D for each n € N. Assume
that for each t € T", there exists a compact interval neighbourhood U(t)
such that the sequence {f2},cn converges uniformly on U(t) N D.

i If {fy}nen converges at some ty € U(t) for some t € T", then it
converges uniformly on U(t).

i If {fy}nen converges at some ty € T, then it converges uniformly on
U(t) for all t € T*.

iii The limit mapping f = lim,_, f, is pre-differentiable with D and

FA(t) = lim fA(t) forall teD.
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i] Since {f2},en converges uniformly on U(t) N D, there exists N € N
such that

sup |(fm — f2)2(s)|
seU(t)nD

is finite for all m;n € N. Let m,n > N and r € U(t). Then

|fa(r) = fm(N)l = [fa(r) = fm(r) = (fat0) = fin(t0)) + (fa(t0) — fim(t0))|

IA

|fa(to) — fm(t0)| + { sup |(fn — fm)A(S)!} |r = tol.

seU(t)nD

Hence, {fy}nen converges uniformly on U(t), i.e., {fy}nen is a locally
uniformly convergent sequence. Ol
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Assume {f,(to)}nen converges for some to € T. Consider the statement

S(t): {fa(t)}nen converges.

Since {f,(to)} converges, the statement S(tp) is true. Let t be
right-scattered and assume that S(t) is true. Then

a0 () = fo(t) + pu(t)f3(t)

converges by the assumption, i.e., S(o(t)) is true. Let t be right-dense and
assume that S(t) is true. Then, by i, {f,}nen converges on U(t), and so

S(r) is true for all r € U(t) N (t,00). Let t be left-dense and assume that
S(r) is true for all ty < r < t. Since U(t) N [to, t) # 0, using again part i,
we have that {f,},en converges on U(t); in particular, S(t) is true. O
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Consequently, S(t) is true for all t € [ty, 00). Using the dual version of the
induction principle for the negative direction, we have that S(t) is also true
for all t € (—o0, ty] (we note that the first part of this has already been
shown, the second part follows by f,(p(t)) = fa(t) — u(p(t))F2(p(t)), the
third part and the fourth part follow again by i). [iii] Let t € D. Without
loss of generality, we can assume that o(t) € U(t). We takee >0
arbitrarily. Using i, there exists N € N such that

I(fn—fm)(f)—(fn—fm)(U(t))lS{ sup I(fn—fm)A(S)l}lf—U(t)l

seU(t)nD

for all r € U(t) and all m,n > N. Since O
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{an}nEN
converges uniformly on U(t) N D, there exists Nj > N such that

sup  |(fa — fm)A(5)| <
seU(t)nD

for all m,n> Nj.

W ™

Hence,
K&—%Xd—ﬁrﬂﬁwMNﬁgv—dﬂ

for all r € U(t) and for all m,n > Nj. Now, letting m — oo, we obtain
€
|(fa = £)(r) = (fa = F)(o ()] < 3Ir = o(2)]
for all r € U(t) and all n > Nj. Let

g = lim 2
n—oo

Then there exists M > N; such that O
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R
FORFIOESS

and since fy is differentiable at t, there also exists a neighbourhood W of
t with .
(o (t)) — fu(r) — fig (£)(o(t) — r)| < g!a(t) —r|

for all r € W. From here, for all r € U(t) N W, we get

|f(a(t)) — £(r) — g()lo(t) — rl| < [(fm — F)(o(2)) = (fm — £)(r)]

+fi7 (8) — g(®)llo(t) = r| + fun(o (1) — fu(r) = fig (£)lo(t) —r]]

5 5 €
< = _ b _ b _
< Slolt) — rl+ Slo(t) — rl + Slo(t) —
= ¢lo(t) —r|.
Consequently, f is differentiable at t with F2(t) = g(t). O
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Let tg € T, xo € R. Assume f : T® — R is regulated. Then there exists
exactly one pre-differentiable function f with D satisfying

FA(t)=f(t) forall teD, F(t)=x.

Let n € N and consider the statement

there exists a pre-differentiable  (Fpt, Dpt),
S(t): Fnt : [to,t] = R with  Fpe(to) = x and

|Fat(s) = f(s)| < & for s € Dn.
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Let t = tg, Dnt, = 0 and Fpt,(to) = xo. Then the statement S(tp) is true.
Let t be right-scattered and assume that S(t) is true. Define

Dna(t) = Dp: U {t}

and Fna(t) on [t070(t)] by

Fne(s) if s ¢ [to,t]
Fro(t)(s) =
Fnt(t) + u(t)f(t) if s=o(t).
Then
Fro(t)(to) = Fat(to) = xo,
1
Flﬁr(t)(s) - f(S)‘ = |FA(s) - f(s)| < - for s € Dy,
and O
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F& o(8) = F(1)|

<

Fna(t)(a(t)) - Fna(t)(t)
p(t) f(t)‘
Fre(t) + p(t)f(t) — Fro(r)(1)
p(t) f(t)'
Fnt(t) + ,u(t)f(t) - Fnt(t)
u(o) i
n(e)f(t)
u(t) )

0
1

and therefore the statement S(o(t)) is true.
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Let t be right-dense and assume that S(t) is true. Since t is right-dense
and f is regulated,

+ . . .
f(th) = s_!lt?;>tf(s) exists.

Hence, there exists a neighbourhood U of t with

F(s) — F(e)| <

for all s e UnN(t,o00). (2)
Let r € UN(t,00). Define Dpy = (Dne \ {t}) U[t, r]® and Fp, on [to, r] by

Fot(s) if s € [to,t]

Foe(t) + f(tT)(s—t) if se(t,r]

Ol
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Then F,, is continuous at t and hence on [ty, r]. Also, Fy, is differentiable
on (t, r]"® with
FA(s) = f(tt) forall se(t,r]".

Hence, F,, is pre-differentiable on [to, t). Since t is right-dense, we have
that F,, is pre-differentiable with D,,. From here and from (2), we also
have

|FE(s) — f(s)] < % for all s € D,,.

Therefore, the statement S(r) is true for all r € U N (t,00). Now, let t be
left-dense and suppose that S(r) is true for r < t. Since f is regulated,

f(t7)= lim f(s) exists. (3)

s—t,s<t

Ol
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Hence, there exists a neighbourhood U of t with

1f(s) — f(t7)| < forall se Un(—oo,t).

1
n
Fix some r € U N (—oo, t) and define

Dpr U (r, t) if r is right-dense
Dpe =
Dpr U |r, t) if r is right-scattered

and Fp: on [to, t] by

Fnr(s) if s¢& (to, r]

Fnr(t)+f(t_)(5—r) if se (r, t].

l:‘ 2
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We note that Fp; is continuous at r and hence in [tg, t]. Since
FA(s)=f(t7) forall se(r,t],
F.: is pre-differentiable with D,; and

|Frt(s) — F(s)| < for all s € Dpt.

S|

Hence, the statement S(t) is true.
By the induction principle, it follows that S(t) is true for all t > to,
teT. L]
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Similarly, we can show that S(t) is valid for t < ty. Hence, F, is
pre-differentiable with D, F,(ty) = xo, and

1
|FA(t) — f(t)] < ~ forall teD,

Now, let
F=lim F, and D= ﬂ D,.
neN

Then F(ty) = xo, f is pre-differentiable on D, and, using Theorem 15,

FA(t) = lim FA(t) = f(t) forall teD.
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