Time Scales Analysis Lecture 8

Regulated Functions, Pre-Differentiable Functions, Chain Rules. One
Sided Derivatives

Svetlin G. Georgiev

October 3, 2025

Definition

A function $f: \mathbb{T} \to \mathbb{R}$ is called *regulated* provided its right-sided limits exist (finite) at all right-dense points in \mathbb{T} and its left-sided limits exist (finite) at all left-dense points in \mathbb{T} .

Example

Let $\mathbb{T}=\mathbb{N}$ and

$$f(t)=rac{t^2}{t-1},\quad g(t)=rac{t}{t+1},\quad t\in\mathbb{T}.$$

We note that all points of $\mathbb T$ are right-scattered. The points $t\in\mathbb T$, $t\neq 1$, are left-scattered. Also, $\lim_{t\to 1-} f(t)$ is not finite and $\lim_{t\to 1-} g(t)$ exists and it is finite. Therefore, the function f is not regulated and the function g is regulated.

Example

Let $\mathbb{T}=\mathbb{R}$ and

We have that all points of \mathbb{T} are dense and $\lim_{t\to 0-} f(t)$, $\lim_{t\to 0+} f(t)$ are not finite. Therefore, the function f is not regulated.

Definition

A continuous function $f: \mathbb{T} \to \mathbb{R}$ is called *pre-differentiable* with (region of differentiation) D, provided

- ② $\mathbb{T}^{\kappa} \setminus D$ is countable and contains no right-scattered elements of \mathbb{T} ,
- **3** f is differentiable at each $t \in D$.

Example

Let
$$\mathbb{T} = P_{a,b} = \bigcup_{k=0}^{\infty} [k(a+b), k(a+b) + a]$$
 for $a > b > 0$. Define $f: \mathbb{T} \to \mathbb{R}$ by

$$f(t) = \begin{cases} 0 & \text{if} \quad t \in \bigcup_{k=0}^{\infty} [k(a+b), k(a+b) + b] \\ t - (a+b)k - b & \text{if} \quad t \in [(a+b)k + b, (a+b)k + a]. \end{cases}$$

Then f is pre-differentiable with $D = \mathbb{T} \setminus \bigcup_{k=0}^{\infty} \{(a+b)k + b\}$.

Example

Let $\mathbb{T}=\mathbb{R}$ and

$$f(t) = egin{cases} rac{1}{t-3} & ext{if} & \mathbb{R} \setminus \{3\} \ 0 & ext{if} & t = 3. \end{cases}$$

Since $f: \mathbb{T} \to \mathbb{R}$ is not continuous at t = 3, the function f is not pre-differentiable.

Example

Let $\mathbb{T} = \mathbb{N}_0 \bigcup \left\{ 1 - \frac{1}{n} : n \in \mathbb{N} \right\}$ and

$$f(t) = egin{cases} 0 & ext{if} & t \in \mathbb{N} \ t & ext{otherwise}. \end{cases}$$

Since f is not continuous at t = 1, it is not pre-differentiable.

Definition

A function $f:\mathbb{T}\to\mathbb{R}$ is called $\mathit{rd-continuous}$ provided it is continuous at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T} . The set of rd-continuous functions $f:\mathbb{T}\to\mathbb{R}$ is denoted by C_{rd} or $C_{rd}(\mathbb{T})$ or $C_{rd}(\mathbb{T},\mathbb{R})$. The set of functions $f:\mathbb{T}\to\mathbb{R}$ that are differentiable and whose derivative is rd-continuous is denoted by $C^1_{rd}(\mathbb{T})$.

Some results concerning rd-continuous and regulated functions are contained in the following theorem. Since its statements follow directly from the definitions, we leave the proofs to the reader.

Assume $f : \mathbb{T} \to \mathbb{R}$.

- 1 If f is continuous, then f is rd-continuous.
- 2 If f is rd-continuous, then f is regulated.
- **3** The jump operator σ is rd-continuous.
- If f is regulated or rd-continuous, then so is f^{σ} .
- **3** Assume f is continuous. If $g: \mathbb{T} \to \mathbb{R}$ is regulated or rd-continuous, then $f \circ g$ has that property.

Every regulated function on a compact interval is bounded.

Proof.

Assume that $f:[a,b]\to\mathbb{R}$, $[a,b]\subset\mathbb{T}$, is unbounded. Then, for each $n\in\mathbb{N}$, there exists $t_n\in[a,b]$ such that $|f(t_n)|>n$. Because $\{t_n\}_{n\in\mathbb{N}}\subset[a,b]$, there exists a subsequence $\{t_n\}_{k\in\mathbb{N}}\subset\{t_n\}_{n\in\mathbb{N}}$ such that

$$\lim_{k\to\infty}t_{n_k}=t_0.$$

Since \mathbb{T} is closed, we have that $t_0 \in \mathbb{T}$. Also, t_0 is a right-dense point or a left-dense point. Using that f is regulated, we get

$$\left|\lim_{k\to\infty}f(t_{n_k})\right|\neq\infty,$$

which is a contradiction.

Theorem (Mean Value Theorem)

If $f,g:\mathbb{T}\to\mathbb{R}$ are pre-differentiable with D, then

$$|f^{\Delta}(t)| \leq |g^{\Delta}(t)|$$
 for all $t \in D$

implies

$$|f(s)-f(r)| \le g(s)-g(r)$$
 for all $r,s \in \mathbb{T}, r \le s$. (1)

Proof.

Let $r, s \in \mathbb{T}$ with r < s. Assume also

$$[r,s)\setminus D=\{t_n:n\in\mathbb{N}\}.$$

We take $\varepsilon > 0$. We consider the statements

$$|S(t):|f(t)-f(r)|\leq g(t)-g(r)+arepsilon\left(t-r+\sum_{t_n\leq t}2^{-n}
ight)$$

We will prove, using the induction principle, that S(t) is true for all $t \in [r, s]$.

Since $0 \le \varepsilon \sum_{t_n \le t} 2^{-n}$, the statement S(r) is true.

Let $t \in [r,s]$ be right-scattered and assume that S(t) is true. Then we have

$$|f(\sigma(t)) - f(r)| = |f(t) + \mu(t)f^{\Delta}(t) - f(r)|$$

$$\leq \mu(t)|f^{\Delta}(t)| + |f(t) - f(r)|$$

$$\leq \mu(t)|f^{\Delta}(t)| + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$\leq \mu(t)g^{\Delta}(t) + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$\leq g(\sigma(t)) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$< g(\sigma(t)) - g(r) + \varepsilon \left(\sigma(t) - r + \sum_{t_n < \sigma(t)} 2^{-n}\right)$$

since $t < \sigma(t)$. Hence, $S(\sigma(t))$ is true. Let $t \in [r, s)$ be right-dense. Let $t \in D$. Then f and g are differentiable at t. Hence, there exists a neighbourhood U of t such that

$$|f(t)-f(au)-f^{\Delta}(t)(t- au)|\leq rac{arepsilon}{2}|t- au|$$

and

$$|g(t)-g(au)-g^{\Delta}(t)(t- au)|\leq rac{arepsilon}{2}|t- au|$$

for all $\tau \in U$.

Thus,

$$|f(t)-f(\tau)| \leq \left(|f^{\Delta}(t)| + \frac{\varepsilon}{2}\right)|t-\tau|$$

for all $\tau \in U$ and

$$g(\tau) - g(t) + g^{\Delta}(t)(t-\tau) \geq -\frac{\varepsilon}{2}|t-\tau|$$

for all $\tau \in U$, i.e.,

$$g(\tau) - g(t) - g^{\Delta}(t)(\tau - t) \geq -\frac{\varepsilon}{2}|t - \tau|$$

for all $\tau \in U$. Hence, for all $\tau \in U \cap (t, \infty)$, we have

$$|f(\tau) - f(r)| = |f(\tau) - f(t) + f(t) - f(r)|$$

$$\leq |f(\tau) - f(t)| + |f(t) - f(r)|$$

$$\leq \left(|f^{\Delta}(t)| + \frac{\varepsilon}{2}\right)|t - \tau| + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$\leq \left(g^{\Delta}(t) + \frac{\varepsilon}{2}\right)|t - \tau| + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$= g^{\Delta}(t)(\tau - t) + \frac{\varepsilon}{2}(\tau - t) + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n}\right)$$

$$\leq g(\tau) - g(T) + \frac{\varepsilon}{2} |t - \tau| + \frac{\varepsilon}{2} (\tau - t) + g(t) - g(r)$$

$$+ \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n} \right)$$

$$= g(\tau) - g(r) + \varepsilon (\tau - t) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n} \right)$$

$$= g(\tau) - g(r) + \varepsilon \left(\tau - r + \sum_{t_n < t} 2^{-n} \right) .$$

Therefore, $S(\tau)$ is true for all $\tau \in U \cap (t, \infty)$.

Let $t \notin D$. Then $t = t_m$ for some $m \in \mathbb{N}$. Since f and g are pre-differentiable, they both are continuous. Therefore, there exists a neighbourhood U of t such that

$$|f(\tau) - f(t)| \le \frac{\varepsilon}{2} 2^{-m}$$
 for all $\tau \in U$

and

$$|g(\tau)-g(t)| \leq rac{arepsilon}{2} 2^{-m} \quad ext{for all} \quad au \in U.$$

Therefore,

$$g(\tau) - g(t) \ge -\frac{\varepsilon}{2} 2^{-m}$$
 for all $\tau \in U$.

Consequently,

$$|f(\tau) - f(r)| = |f(\tau) - f(t) + f(t) - f(r)|$$

$$\leq |f(\tau) - f(t)| + |f(t) - f(r)|$$

$$\leq \frac{\varepsilon}{2} 2^{-m} + g(t) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n} \right)$$

$$\leq \frac{\varepsilon}{2} 2^{-m} + g(\tau) + \frac{\varepsilon}{2} 2^{-m} - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n} \right)$$

$$= \varepsilon 2^{-m} + g(\tau) - g(r) + \varepsilon \left(t - r + \sum_{t_n < t} 2^{-n} \right)$$

$$\leq \varepsilon 2^{-m} + g(\tau) - g(r) + \varepsilon \left(\tau - r + \sum_{t_n < \tau} 2^{-n} \right),$$

so $S(\tau)$ is true for all $\tau \in U \cap (t, \infty)$.

Let t be left-dense and assume that $S(\tau)$ is true for $\tau \in [r,t)$. Then

$$\lim_{\tau \to t^{-}} |f(\tau) - f(r)| \leq \lim_{\tau \to t^{-}} \left\{ g(\tau) - g(r) + \varepsilon \left(\tau - r + \sum_{t_{n} < \tau} 2^{-n} \right) \right\}$$

$$\leq \lim_{\tau \to t^{-}} \left\{ g(\tau) - g(r) + \varepsilon \left(\tau - r + \sum_{t_{n} < \tau} 2^{-n} \right) \right\}$$

implies that S(t) is true since f and g are continuous at t.

Thus, using the induction principle, if follows that S(t) is true for all $t \in [r, s]$. Consequently, (1) holds for all $r \leq s$, $r, s \in \mathbb{T}$.

Suppose $f: \mathbb{T} \to \mathbb{R}$ is pre-differentiable with D. If U is a compact interval with endpoints $r, s \in \mathbb{T}$, then

$$|f(s)-f(r)| \leq \left\{ \sup_{t \in U^{\kappa} \cap D} |f^{\Delta}(t)| \right\} |s-r|.$$

Proof.

Without loss of generality, we suppose that $r \leq s$. We set

$$g(t) = \left\{ \sup_{ au \in U^\kappa \cap D} |f^\Delta(au)|
ight\} (t-r), \quad t \in \mathbb{T}.$$

Then

$$g^{\Delta}(t) = \left\{ \sup_{ au \in U^{\kappa} \cap D} |f^{\Delta}(au)|
ight\} \geq |f^{\Delta}(t)|$$

for all $t \in D \cap [r,s]^{\kappa}$. Thus, using Theorem 11, we obtain

$$|f(t)-f(r)| \le g(t)-g(r)$$
 for all $t \in [r,s]$,

whereupon

$$|f(s)-f(r)|\leq g(s)-g(r)=g(s)=\left\{\sup_{t\in U^\kappa\cap D}|f^\Delta(t)|
ight\}(s-r).$$

Let f be pre-differentiable with D. If $f^{\Delta}(t) = 0$ for all $t \in D$, then f is a constant function.

Proof.

Let U be a compact interval with endpoints $r,s\in\mathbb{T}$. From Theorem 12, it follows that for all $r,s\in\mathbb{T}$,

$$|f(s)-f(r)| \leq \left\{ \sup_{t \in U^{\kappa} \cap D} |f^{\Delta}(t)| \right\} |s-r| = 0,$$

i.e., f(s) = f(r). Therefore, f is a constant function.

Let f and g be pre-differentiable with D. If $f^{\Delta}(t) = g^{\Delta}(t)$ for all $t \in D$, then

$$g(t) = f(t) + C$$
 for all $t \in \mathbb{T}$,

where C is a constant.

Proof.

Let h(t) = f(t) - g(t), $t \in \mathbb{T}$. Then

$$h^{\Delta}(t) = f^{\Delta}(t) - g^{\Delta}(t) = 0$$
 for all $t \in D$.

Thus, using Theorem 13, it follows that h is a constant function.

Suppose $f_n : \mathbb{T} \to \mathbb{R}$ is pre-differentiable with D for each $n \in \mathbb{N}$. Assume that for each $t \in \mathbb{T}^{\kappa}$, there exists a compact interval neighbourhood U(t) such that the sequence $\{f_n^{\Delta}\}_{n \in \mathbb{N}}$ converges uniformly on $U(t) \cap D$.

- i If $\{f_n\}_{n\in\mathbb{N}}$ converges at some $t_0\in U(t)$ for some $t\in\mathbb{T}^\kappa$, then it converges uniformly on U(t).
- ii If $\{f_n\}_{n\in\mathbb{N}}$ converges at some $t_0\in\mathbb{T}$, then it converges uniformly on U(t) for all $t\in\mathbb{T}^{\kappa}$.
- iii The limit mapping $f=\lim_{n o\infty}f_n$ is pre-differentiable with D and

$$f^{\Delta}(t) = \lim_{n \to \infty} f_n^{\Delta}(t)$$
 for all $t \in D$.

i] Since $\{f_n^{\Delta}\}_{n\in\mathbb{N}}$ converges uniformly on $U(t)\cap D$, there exists $N\in\mathbb{N}$ such that

$$\sup_{s\in U(t)\cap D}|(f_m-f_n)^{\Delta}(s)|$$

is finite for all $m, n \in \mathbb{N}$. Let $m, n \geq N$ and $r \in U(t)$. Then

$$|f_n(r) - f_m(r)| = |f_n(r) - f_m(r) - (f_n(t_0) - f_m(t_0)) + (f_n(t_0) - f_m(t_0))|$$

$$\leq |f_n(t_0) - f_m(t_0)| + \left\{ \sup_{s \in U(t) \cap D} |(f_n - f_m)^{\Delta}(s)| \right\} |r - t_0|.$$

Hence, $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly on U(t), i.e., $\{f_n\}_{n\in\mathbb{N}}$ is a locally uniformly convergent sequence.

ii.

Assume $\{f_n(t_0)\}_{n\in\mathbb{N}}$ converges for some $t_0\in\mathbb{T}$. Consider the statement

$$S(t)$$
: $\{f_n(t)\}_{n\in\mathbb{N}}$ converges.

Since $\{f_n(t_0)\}$ converges, the statement $S(t_0)$ is true. Let t be right-scattered and assume that S(t) is true. Then

$$f_n(\sigma(t)) = f_n(t) + \mu(t)f_n^{\Delta}(t)$$

converges by the assumption, i.e., $S(\sigma(t))$ is true. Let t be right-dense and assume that S(t) is true. Then, by i, $\{f_n\}_{n\in\mathbb{N}}$ converges on U(t), and so S(r) is true for all $r\in U(t)\cap (t,\infty)$. Let t be left-dense and assume that S(r) is true for all $t_0\leq r< t$. Since $U(t)\cap [t_0,t)\neq \emptyset$, using again part i, we have that $\{f_n\}_{n\in\mathbb{N}}$ converges on U(t); in particular, S(t) is true. \square

Consequently, S(t) is true for all $t \in [t_0, \infty)$. Using the dual version of the induction principle for the negative direction, we have that S(t) is also true for all $t \in (-\infty, t_0]$ (we note that the first part of this has already been shown, the second part follows by $f_n(\rho(t)) = f_n(t) - \mu(\rho(t)) f_n^{\Delta}(\rho(t))$, the third part and the fourth part follow again by i). [iii] Let $t \in D$. Without loss of generality, we can assume that $\sigma(t) \in U(t)$. We take $\varepsilon > 0$ arbitrarily. Using i, there exists $N \in \mathbb{N}$ such that

$$|(f_n-f_m)(r)-(f_n-f_m)(\sigma(t))|\leq \left\{\sup_{s\in U(t)\cap D}|(f_n-f_m)^{\Delta}(s)|\right\}|r-\sigma(t)|$$

for all $r \in U(t)$ and all $m, n \geq N$. Since

$$\{f_n^{\Delta}\}_{n\in\mathbb{N}}$$

converges uniformly on $U(t) \cap D$, there exists $N_1 \geq N$ such that

$$\sup_{s \in U(t) \cap D} |(f_n - f_m)^{\Delta}(s)| \leq \frac{\varepsilon}{3} \quad \text{for all} \quad m, n \geq N_1.$$

Hence.

$$|(f_n-f_m)(r)-(f_n-f_m)(\sigma(t))|\leq \frac{\varepsilon}{3}|r-\sigma(t)|$$

for all $r \in U(t)$ and for all $m, n \geq N_1$. Now, letting $m \to \infty$, we obtain

$$|(f_n-f)(r)-(f_n-f)(\sigma(t))|\leq \frac{\varepsilon}{3}|r-\sigma(t)|$$

for all $r \in U(t)$ and all $n \geq N_1$. Let

$$g = \lim_{n \to \infty} f_n^{\Delta}$$
.

Then there exists $M > N_1$ such that

$$|f_M^{\Delta}(t)-g(t)|\leq \frac{\varepsilon}{3},$$

and since f_M is differentiable at t, there also exists a neighbourhood W of t with

$$|f_{M}(\sigma(t)) - f_{M}(r) - f_{M}^{\Delta}(t)(\sigma(t) - r)| \leq \frac{\varepsilon}{3}|\sigma(t) - r|$$

for all $r \in W$. From here, for all $r \in U(t) \cap W$, we get

$$|f(\sigma(t)) - f(r) - g(t)|\sigma(t) - r|| \le |(f_M - f)(\sigma(t)) - (f_M - f)(r)|$$

$$+|f_M^{\Delta}(t) - g(t)||\sigma(t) - r| + |f_M(\sigma(t)) - f_M(r) - f_M^{\Delta}(t)|\sigma(t) - r||$$

$$\le \frac{\varepsilon}{3}|\sigma(t) - r| + \frac{\varepsilon}{3}|\sigma(t) - r| + \frac{\varepsilon}{3}|\sigma(t) - r|$$

Consequently, f is differentiable at t with $f^{\Delta}(t) = g(t)$.

 $= \varepsilon |\sigma(t) - r|.$

Let $t_0 \in \mathbb{T}$, $x_0 \in \mathbb{R}$. Assume $f : \mathbb{T}^{\kappa} \to \mathbb{R}$ is regulated. Then there exists exactly one pre-differentiable function f with D satisfying

$$F^{\Delta}(t)=f(t)$$
 for all $t\in D,$ $F(t_0)=x_0.$

Proof.

Let $n \in \mathbb{N}$ and consider the statement

$$S(t): \left\{egin{array}{ll} ext{there exists a pre-differentiable} & (F_{nt},D_{nt}), \ \\ F_{nt}:[t_0,t]
ightarrow \mathbb{R} & ext{with} & F_{nt}(t_0) = x_0 & ext{and} \ \\ |F^{\Delta}_{nt}(s) - f(s)| \leq rac{1}{n} & ext{for} & s \in D_{nt}. \end{array}
ight.$$

Let $t = t_0$, $D_{nt_0} = \emptyset$ and $F_{nt_0}(t_0) = x_0$. Then the statement $S(t_0)$ is true. Let t be right-scattered and assume that S(t) is true. Define

$$D_{n\sigma(t)}=D_{nt}\cup\{t\}$$

and $F_{n\sigma(t)}$ on $[t_0, \sigma(t)]$ by

$$F_{n\sigma(t)}(s) = egin{cases} F_{nt}(s) & ext{if} & s \in [t_0,t] \ \\ F_{nt}(t) + \mu(t)f(t) & ext{if} & s = \sigma(t). \end{cases}$$

Then

$$egin{aligned} F_{n\sigma(t)}(t_0) &= F_{nt}(t_0) = x_0, \ \Big|F_{n\sigma(t)}^{\Delta}(s) - f(s)\Big| &= \Big|F_{nt}^{\Delta}(s) - f(s)\Big| \leq rac{1}{n} \quad ext{for} \quad s \in D_{nt}, \end{aligned}$$

and

$$\begin{aligned} \left| F_{n\sigma(t)}^{\Delta}(t) - f(t) \right| &= \left| \frac{F_{n\sigma(t)}(\sigma(t)) - F_{n\sigma(t)}(t)}{\mu(t)} - f(t) \right| \\ &= \left| \frac{F_{nt}(t) + \mu(t)f(t) - F_{n\sigma(t)}(t)}{\mu(t)} - f(t) \right| \\ &= \left| \frac{F_{nt}(t) + \mu(t)f(t) - F_{nt}(t)}{\mu(t)} - f(t) \right| \\ &= \left| \frac{\mu(t)f(t)}{\mu(t)} - f(t) \right| \\ &= 0 \\ &\leq \frac{1}{n}, \end{aligned}$$

and therefore the statement $S(\sigma(t))$ is true.

Let t be right-dense and assume that S(t) is true. Since t is right-dense and f is regulated,

$$f(t^+) = \lim_{s \to t, s > t} f(s)$$
 exists.

Hence, there exists a neighbourhood U of t with

$$|f(s)-f(t^+)| \leq \frac{1}{n} \quad \text{for all} \quad s \in U \cap (t,\infty).$$
 (2)

Let $r \in U \cap (t, \infty)$. Define $D_{nr} = (D_{nt} \setminus \{t\}) \cup [t, r]^{\kappa}$ and F_{nr} on $[t_0, r]$ by

$$F_{nr}(s) = egin{cases} F_{nt}(s) & ext{if} & s \in [t_0, t] \ \\ F_{nt}(t) + f(t^+)(s-t) & ext{if} & s \in (t, r]. \end{cases}$$

Then F_{nr} is continuous at t and hence on $[t_0, r]$. Also, F_{nr} is differentiable on $(t, r]^{\kappa}$ with

$$F_{nr}^{\Delta}(s) = f(t^+)$$
 for all $s \in (t, r]^{\kappa}$.

Hence, F_{nr} is pre-differentiable on $[t_0, t)$. Since t is right-dense, we have that F_{nr} is pre-differentiable with D_{nr} . From here and from (2), we also have

$$|F_{nr}^{\Delta}(s) - f(s)| \leq \frac{1}{n}$$
 for all $s \in D_{nr}$.

Therefore, the statement S(r) is true for all $r \in U \cap (t, \infty)$. Now, let t be left-dense and suppose that S(r) is true for r < t. Since f is regulated,

$$f(t^{-}) = \lim_{s \to t, s < t} f(s) \quad \text{exists.}$$
 (3)

Hence, there exists a neighbourhood U of t with

$$|f(s)-f(t^-)| \leq rac{1}{n} \quad ext{for all} \quad s \in U \cap (-\infty,t).$$

Fix some $r \in U \cap (-\infty, t)$ and define

$$D_{nt} = egin{cases} D_{nr} \cup (r,t) & ext{ if } r ext{ is right-dense} \ \\ D_{nr} \cup [r,t) & ext{ if } r ext{ is right-scattered} \end{cases}$$

and F_{nt} on $[t_0, t]$ by

$$F_{nt}(s) = egin{cases} F_{nr}(s) & ext{if} \quad s \in (t_0, r] \ \\ F_{nr}(t) + f(t^-)(s-r) & ext{if} \quad s \in (r, t]. \end{cases}$$

We note that F_{nt} is continuous at r and hence in $[t_0, t]$. Since

$$F_{nt}^{\Delta}(s) = f(t^-)$$
 for all $s \in (r, t]$,

 F_{nt} is pre-differentiable with D_{nt} and

$$|F_{nt}^{\Delta}(s) - f(s)| \leq \frac{1}{n} \quad ext{for all} \quad s \in D_{nt}.$$

Hence, the statement S(t) is true.

By the induction principle, it follows that S(t) is true for all $t \geq t_0$, $t \in \mathbb{T}$.

Similarly, we can show that S(t) is valid for $t \le t_0$. Hence, F_n is pre-differentiable with D_n , $F_n(t_0) = x_0$, and

$$|F_n^{\Delta}(t) - f(t)| \leq \frac{1}{n}$$
 for all $t \in D_n$.

Now, let

$$F = \lim_{n \to \infty} F_n$$
 and $D = \bigcap_{n \in \mathbb{N}} D_n$.

Then $F(t_0) = x_0$, f is pre-differentiable on D, and, using Theorem 15,

$$F^{\Delta}(t) = \lim_{n \to \infty} F_n^{\Delta}(t) = f(t)$$
 for all $t \in D$.

