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Theorem (Chain Rule)

Assume g : R — R is continuous, g : T — R is delta differentiable on T*,
and f : R — R is continuously differentiable. Then there exists
c € [t,o(t)] with

(f 0 8)2(t) = f'(g(c))g™ (1). (1)

v
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Fix t € T". If t is right-scattered, then

(fog)i(t) =

If g(t) = g(o(t)), then
(fog)?(t)=0 and g(t)=0,

and so (1) holds for any ¢ € [t,o(t)]. Assume that g(o(t)) # g(t). Then,
by the mean value theorem,

fg(o(t))) — f(g(t)) g(a(t)) — &(t)

(o) = o —et  u
= f(&)g®(t),
where ¢ is between g(t) and g(o(t)). O
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Since g : R — R is continuous, there exists ¢ € [t, o(t)] such that
g(c) =¢&. If tis right-dense, then

o Fle(t) — F(g(s))

(Fog)2(r) = lim “E—
o Fle() ~ f(g(s) 8(t) — &(5)
S g(t) g(s)  t-s
(e 8(E) — &(s)
= sllnt (f(§s)H>,

where & is between g(s) and g(t). By the continuity of g, we get that
lims_: & = g(t). Therefore,

(f o g)2(1) = '(g(t)g" (1)-

This completes the proof.
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Example

Let T=7Z, f(t) = t3+1, g(t) = t>. We have that g : R — R is
continuous, g : T — R is delta differentiable on T*, f: R — R is
continuously differentiable, o(t) =t + 1. Then

gh(t)=o(t) +t

and
(fog)®(1) = f'(g(c))g(1) = 3g°(c)(a(1) + 1) = 9c*. (2)

Here, c € [1,0(1)] = [1,2].
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Also,
fog(t)=f(g(t) =g*(t) +1=1t°+1
so that

(Fog)2(t) = (a(t))® + t(a(t)* + £2(o (1)) + £3(0 (1)) + tho(t) + £°
and
(Fog)®(1) = o®(1) + o*(1) + o3(1) + 0*(1) + o(1) + 1 = 63.

By (2), we get

63=09c* so c*=7, so c=V7€ell,2].
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Let T = {2": n € No}, f(t) =t +2, g(t) = t> — 1. We note that
g : T — R is delta differentiable, g : R — R is continuous and f : R — R
is continuously differentiable. For t € T, t = 2", n € Ny, n = log, t, we
have

o(t) = inf{z’ 2> 2" e No} —2ml —2p > ¢,

Therefore, all points of T are right-scattered. Since sup T = oo, we have
that T = T. Also, for t € T, we have

(Fog)(t)=f(g(t)) =g(t)+2=t"—-1+2=1"+1

and
(fog)?(t) =o(t) +t=2t+t =3t

Hence,
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Example

(fog)(2) =6. (3)

Now, using Theorem 1, we get that there exists ¢ € [2,0(2)] = [2,4] such
that

(fog)®(2) = f'(g(c)g?(2) =g(2) =o(2) +2=4+2=6. (4)
From (3) and (4), we find that for every c € [2,4],

(f 0 8)2(2) = f'(g(c))g™(2).
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Let T = {3"2 ne€ No}, f(t) = t>+ 1, g(t) = t3. We note that

g : R — R is continuous, g : T — R is delta differentiable and f : R — R
is continuously differentiable. For t € T, t = 3™, n€ Ng, n = (logsz t)%,
we have

o(t) = inf{3’2: 37 > 37, /eNO}
_ 3("+1)2
— 3. 3172 . 32n

3¢3200830)% o ¢

Consequently, all points of T are right-scattered. Also, supT = co. Then
T® = T. Hence, for t € T, we have
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(fog)®(t) = (t°+1)%

= (0(t))® + t(o(t))* + t2(a(t))® + t3(co(1))? + to(t) + t°.
Thus,

(fog)?(1) =0°(1) + o*(1) + 0>(1) + o%(1) + o (1) + 1
=3° +3*+3%432+3+1 (5)

=364.
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From Theorem 1, it follows that there exists ¢ € [1,0(1)] = [1, 3] such that
(Fog) (1) = F(g(c))g™(1) = 28(c)g(1) = 2c%2(1).  (6)
Because all points of T are right-scattered, we have
g2() =01 +0(1)+1=9+3+1=13.

By (6), we find
(f o g)?(1) = 26¢°.

From the last equation and from (5), we obtain

364 = 26¢3, so c3:%:147 so ¢ =14,
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Let f : R — R be continuously differentiable and suppose g : T — R is
delta differentiable. Then f o g : T — R is delta differentiable, and the
formula

1
0 VA1) — / A A
(fog)™(t) {/O F(g(t) + hu(t)g (t))dh}g ()

holds.

(7)
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Note that
g(o(t))

fa(o(8) - Fe(s) = / L0

1
= (g(a(1)) - g(S))/O f'(h(g(o () + (1 — h)g(s)

Let e > 0 and t € T®. Set

. €

" 12 TP (helo(e) + (1 — Wg(e))ldh

We choose € > 0 so that

€

e+ 1g2@)

Since g is differentiable at t, there exists a neighbourhood Uj of t such
that Ol

= - - -
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8(o(6)) ~ 8(5) — 2(0)(o(t) ~ 5)| < Tlo(t) ~s| forall selh
Since f’ is continuous on R, using that
|hg(a(t)) + (1 — h)g(s) — hg(a(t)) — (1 — h)g(t)| = (1 — h)|g(t) — g(s)|

for h € (0,1), there exists a neighbourhood U» of t such that

€

/(e (o(0)+(1-g(s)~F (e(o () +H1-MEO)] < 57 o aga)

for all s € U,. Let
U=UnNnU, sel.

We put

o = hg(o(£) +(1— hg(s) and 5= hg(o(t)) + (1 — Wg(t).
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](fog)(a( )~ (Fog)(s) / (8 dh'
= |(eto(®) - () /O F(hg(o(1)) + (1 — h)g(s))dh

1
~(o(t) = 9)£(0) | F ()

1

— [(e(o(2) ~ ()~ (o10) - )g(0) [ F(a)dh

0
1

Ho(t) — )81 /0 ('(a) ~ /()b

IA

2(o(1)) - g(s) - f) / 1#'(a)|dh
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1
+H(e* + g (1))lo(t) — S\/ () = £/(B)]dh

IA

o(t) — s ° ()| dh
lo{t) ’ (1+2f0 I/( B)|dh / )

+e* + g ())lo(t) — sl

2(e* + g2(1))

5 o €
0= i) (1+ [ 1r@ian) + Sote) -

“lo(t) = sl + Slo(0) — s

IN

IN

= ¢lo(t) —s|.
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Let T=Z, f(t) = 7z, g(t) =t + 1. Note that f : R - R is

continuously differentiable and g : T — R is delta differentiable. We have

f0) =~ MO=1 £0=1
and
g(t) + hu(t)g®(t) =t +1+h.
Hence,

F(g(t) + hu(t))g®(t) = f'(t+1+h)

2(t+1+h)
(14 (t+14 h)2)%
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Example
We conclude thatf o g : T — R is delta differentiable and

B Lo 2(t+1+h)
(fO@A“)"'_A A+ (eritne?

Lod(t+1+h)?
_A (1+ (t+ 1+ h)?)2
1 h=1
1+U+1+hy‘

1 1
1+ (t+2)2 1+ (t+1)2

h=0
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(D= (0 2)2
(t? + 4t +5)(t? + 2t + 3)

GE AL D T — g2 A A
(t2 + 4t + 5)(t% + 2t + 3)
—2t -3
(t2+4t+5)(t2 +2t +3)
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Example
Let T = 2o, f(t) =sint, g(t) = t> + 1. We have that f : R — R is
continuously differentiable, g : T — R is delta differentiable, o(t) = 2t,
u(t) =t, and

gh(t)=o(t) +t=2t+t=3t

so that
g(t) + hu(t)g®(t) = t> + 1+ ht(3t) = t* + 1 + 3t%h.
Moreover,
f'(t) = cos t,
and thus
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'(g(t) + hu(t)g?(t)) = cos(t? + 1 + 3t2h).
We conclude that f o g : T — R is delta differentiable and

(Fog)®(t) = /1 cos(t® + 1 + 3t>h)dh(3t)
0

t 1
= 33t2/ cos(t® + 1+ 3t?h)d(t> + 1 + 3t>h)
0
1 h=1
— Csin(2 41+ 3t2h)‘
t h=0

_ %(sin(4t2 +1) = sin(2 + 1))

2 sin £l cos 57 +1
= —sin— — .
t 2 2

Khaled Zennir Time Scales Analysis Lecture 9 October 7, 2025 21/69



Let
T =3, f(t)=log(l+1t?), g(t)=1—2t.

We have that f : R — R is continuously differentiable, g : T — R is delta
differentiable, o(t) = 3t, p(t) = 2t, and

g2(t) = (o(t))*+ to(t) + > -2
= 02 +32+¢t2-2

= 13t? -2,

so that
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g(t) + hu(t)g®(t) = t3—2t+ h(2t)(13t2 —2)

= 3 -2t +(26t° — 4t)h.
Moreover, X
t

fi(t)= ——

()= o,

and therefore

2(t3 — 2t) + 2(26t3 — 4t)h

f/(g(t)—f—hu(t)gA(t)) 1+ (83 — 2t + (26¢3 — 41)h)?

t3 — 2t + (263 — 4t)h
1+ (t3 — 2t + (2613 — 4t)h)?"
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We conclude that f o g is delta differentiable and

t3 — 2t + (263 — 4t)h

1
e = dh(13t* — 2
(00 = 2 [ 15y pem— agpponist =)
_ Bf-2
- 133 -2t

d(t® — 2t + (268> — 4t))h

y /1 t3 — 2t 4 (2613 — 4t)h
o 14 (83 —2t+ (2613 — 4t)h)?

1 d(e — 2t 4 (2613 — 4t)h)?
2t Jo 1+ (83 — 2t + (2613 — 4t)h)?
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1 h
= —log(t3 -2t 26t3—4th‘
2t0g( +( ))h

=0

= - (log(27¢* — 61) — log(t* — 21)

_ 1 27t — 6

2t 8 t2 -2 °
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Theorem (Chain Rule)

Assume v : T — R is strictly increasing and T = v(T) is a time scale. Let
w: T = R. IfvA(t) and w?(v(t)) exist for t € T*, then

(wov)® = (whov)vA.
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Let € € (0,1) be arbitrarily chosen. We put
. 5

T T VA T WA

Note that 0 < €* < 1. Since w is differentiable at t, there exists a
neighbourhood U; of t such that

V(o (t)) — v(t) — (o(t) — s)VA(t)] < e*|o(t) —s| forall se Uy,

Since w is differentiable at v(t), there exists a neighbourhood U, of v(t)
such that

w(&(v(2))) = w(r) = (5(v(£) = NwA(v(2))] < "6 (v(1)) - r]

forall r € Up. Let U= U Nv () and let s € U. O
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Then s € Uy, v(s) € Uz, and

[w(v((£))) = w(v(s)) = (o(t) — WA (v(E)vA(2)]
= [w(v(o(1)) = w(v(s)) = (5(v(2)) — v(s))wh(v(2))

IA
<
—~~
<
~—~
Q
~—~
~+
N—r
N—r
N—r
|
2
~—~
<
—~
0
N—r
N—r
|
—~~
Q2
—~~
<
~—~
~+
N—r
N—r
|
<
~~
%)
N—r
N
S
>
—~
<
~—~
~
"
=

IA
™
_*
Q2
~
<
~—~
~
N—r
N—r
|
<
—
")
=
+
Q)
_*
Q
~—~
~
N—r
I
B
2
>
—~~
<
—~
~
N—r
=
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R
= [5(v(D) ~ v(s) ~ (o(2) = )A(D) + (o) = s)A ()

+e*|o(t) — s||wh (v(t))]

IA

e (v(1)) = v(s) = (a(t) = s)v2A ()| + e*|o(t) — sl[vA(2)]

+e*|o(t) — sHWA(V(t)N
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< et (o) = sl + [o(e) = slVA()] + o (t) — slIw (v(2))

& (" + VA + WA ((B))o(2) - s
< S+ VA IWEE)o(e) - s

= éelo(t) —sl,

which completes the proof. []
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Let T={22":ne No}, v(t) =t? w(t) =t*+1. Thenv:T - Ris
strictly increasing and T = v(T) = {2%": n € Np} is a time scale. For
teT, t=2%" neNg, we have

o(t) = inf {22’ L 22 5 0% e No} =222 — 44

and
vA(t) = o(t) + t = 5t.
For t € 'ﬁ‘, t=2% ne Np, we have

&(t) = inf {2‘” L oM s ot e NO} — 2%+ _ 16t
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Also, for t € T, we have
(wov)(t) = w(v(t) =v3(t)+1=t*+1
and
(wov)2(t) = (o(t))®+ t(o(t))? + t20(t) + t3
= 6413+ 1683 +4t3 + 13
= 85t
Thus,
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(whov)(e) = &(u(e)+v(®)
= 16v(t) + v(t)
= 17v(t)

= 17¢2

and ;
(WA o v> (t)vA(t) = 17t(5t) = 85¢°.

Consequently,

(wo v)A(t) = (Wh o v(t))VA(t), teT*.
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Let T={n+1:n¢€No}, v(t) =t w(t)=t. Then v: T — R is strictly
increasing and T = {(n+1)? : n € Ng} is a time scale. For t € T,
t=n+1, n € Ny, we have

o(t)=inf{/+1: I+1>n+1 /leNy}=n+2=t+1

and
VA =o(t)+t=t+1+t=2t+1.

ForteT, t= (n+1)2, n € Np, we have

gt) = {(I+1)2: (1+1)?>(n+1)° 1 €No} = (n+2)?

= (n+124+2(n+1)+1=t+2Vt+1.
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Example

Hence, for t € T, we get
whown)(t) =1, (Whov)(tWA(t)=1(t+1)=2t+1,
and thus
wov(t)=v(t)=t%, (wov)2(t)=o(t)+t=2t+1.

Consequently,

(wo v)A(t) = (WP o v(t))VvA(t), teT*.
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Example

Let T = {2":n € No}, v(t) = t, w(t) = t2. Then v : T — R is strictly
increasing and v(T) =T. For t € T, t = 2", n € Np, we have

o(t) =inf{2': 2/ > 27 e Ng} =2"1 =2t

and
vA(t) = 1.
Moreover,
(wov)(t) = w(v(t)) = v3(t) = ¢,
and thus

(wov)2(t) =o(t) + t =2t + t = 3t.
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Therefore,
(w2 o v)(t) = a(v(t)) + v(t) = 2v(t) + v(t) = 3v(t) = 3t,

so that

Consequently,
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Example

Let U= {4 :neN},
T=UuU(l-V)ul+U)u(2-U)u(2+U)u{0o,1,2},

and

f(t) = cost,

gt) = 2+t9)(1-1t?), teT.
We will find (f o g)2(t), t € T*. We have

f'(t)=—sint, teT.

We have the following cases.
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%. We have

Let t =

We get

Next,

Khaled Zennir
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Then

(fog)(t)

27 151
L% dh
C°5<16 256 >

. (27 1 151

Khaled Zennir
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P21 151 27 151
= -4 L) g (L2
/C°5(16 256 )d(16 256 )
0
27 151 )\ |
= 4sin (L2
s'”(16 256 ) o

- (e () ().
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Let t = % We have

We find

Next, we get

#(3) - (+3)(-3)

_ /o5y _ 8
4 4) 16
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Then

1
. 85 1 1195
/sm <—1— -+ Z (—6—4> h) dh
0
/ 85 1195
/Sln <—1—6 — ﬁh> dh
0
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Let t = 0.

Hence,

1
1195 85 1195 85 1105
= 22 fain (-2 - ) g (-2 2y
64 S'”( 16 256 ) ( 16 256 >
0
h=1
= 4cos —8—5—@h
16 256 )|, _,

= 4 <cos

We have

(fog)%(0)

Khaled Zennir

(5)-=(22)
g2(0) = 0.

= £80) [ sin (£(0) + hu(0)g?(0) o
0
0

Time Scales Analysis Lecture 9 October 7, 2025

44 /69



Next, we have
g(1) =0.

Then

(Fog)®(1) = —&°() / sin (£(1) + hu(L)g®(1)) dh

= 6/sm0dh

0
= 0.

Let t = 2. We have
g2(2) = —36.

Khaled Zennir Time Scales Analysis Lecture 9 October 7, 2025 45 /69



We get

n2) = o(2)-2
= 2-2

Next, we find

g2 = (2+4(1-4)
= -18.

Hence,
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(Fog)2(2) = —g°(2) / sin (£(2) + hu(2)8%(2)) dh

1
= 36/sm

0
— —365sin(18).

Let t € U\ {3}. We have
g?(t) = —15¢3 — 3t.
We find

p(t) = o(t)—t
= 2t—t=t.
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(og)2(t) = ~g2(0) [ sin (g(t) + hu()g? (1))
0
=5 [ 5 (60 + (£ 0) 4 (&) + hu(0£>(0)
0
= o cos (8(0) + (e (9) ::
= 5 (cos (£0) + 1(1)g2(1)) — cos(e(e))

-1-\|—l

(cos ((2+1t 2)(1 — t?) — t(15¢3 + 3t)) — cos((2 + t*)(1 — tz))) .
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Let t € (1 — U)\ {3}. We have
1563 + 112 + 17t + 5
gh(t) = - - .
We find
w(t) = oft)—t
L
2
1t
2
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= (cos (&(t) + n(1)g™ (1)) — cosla(1)))

1
p(t)
2 B (1—t)(15t3+11t2+17t—|—5)) 3

- = (cos <(2 +12)(1- %) 16

Let t € (1+ U)\ {3}. We have

1583 + 112 + 17t +5

gA(t) = 8

We find

pt) = oft) -t
= Zi—1—¢
= -1
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Hence,
1
(Fog)(t) = /sm £) + hy(t (t)> dh
0
1 1
- 0/ sin (g(t) + hiu(t)g™ (1)) d (g(t) + hu(D)g™ (2
1 h=1
= e (B0 hetw) |
1
= i (o5 (80 + ()85(1)) — cos((1))
. 3 2 5
_ 1<COS <(2+t2)(1_t2)_(t 1)(15¢t +;1t + 17t + 5)
Let t € (2 — \{ }. We have
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3 2
o5 ):7151“ +22t8~|—32t+8'
We find
uw(t) = o(t)—t
t+2
= > —t
_ 2-t
)
Hence
1
(Fog)(t) = /sm t) + hu(t)g A(t‘)) dh
1 X
— u(to/sm t) + hu(t)g (t))d(g(t)Jrhu(t)gA(t)
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1 h=1
= mcos <g(t) + h,u(f)gA(t)> o
_ u(lt) (cos (g(t) o ,u(t)gA(t)) - cos(g(t)))
_ 3 2
_ L(cos ((2+t2)(1_ ) _ (2 — t)(15¢ +122t +32t+8)>

—cos((2+ t%)(1 — t2))>.
Let t € (2+ U)\ {3}. We have
g2(t) = —15¢> + 34t2 — 31t + 10.
We find

u(t) = o(t)—t=2t—2—t=1t-—2.
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_ ﬁ (cos (g(t) + u(t)gA(t)) - cos(g(t)))

= %(cos ((2+ t2)(1 — %) + (t — 2)(—15t54t> — 31t + 10))

—cos((2+ t*)(1 — t2))>.
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Theorem (Derivative of the Inverse)

Assume v : T — R is strictly increasing and T = v(T) is a time scale.

Then ) 1
((v—l)A 5 v) ()= 72

for any t € T such that v2(t) # 0.

Let w=v~!:T — T in Theorem 19.

Khaled Zennir Time Scales Analysis Lecture 9 October 7, 2025 57 /69



Example

Let T =N and v(t) = t>+ 1. Then o(t) =t +1, v: T — R is strictly
increasing, and
vA(t) =o(t) +t=2t+ 1.

Hence,
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Let T ={n+3:n€No}, v(t)=t2 Then v:T — R is strictly
increasing, o(t) =t+1, and

vA(t) =o(t) +t =2t + 1.

Hence,
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Example

Let T = {2”2 'ne€ No}, v(t) = t3. Then v : T — R is strictly increasing,

andfort € T, t =27, n € No, n = (log, t)%, we have

o(t) = inf {2’2 2P0 e No} (1P _ prtp2ntl _ o2(ogy ) 41

Then )
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vA(t) = (o(t))? + to(t) + t? = 1224l 0342 | 202082 t)341 | 42

Hence,

_1\A 1
(vihH ov)(t)= - - .
t204(logy £)2+2 | $202(logy £)24+1 42
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Definition
If  is defined on [tg, b) C T, then the right-hand derivative of f at tg is

defined to be
L Flo(t) — £(1)
t—to+ (T(to) —t

F(to) =

)

while if f is defined on (a, to] C T, then the left-hand derivative of f at tg

is defined by
fA(t) = lim —f(a(to)) — f(t).

toto—  o(tg) — t
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f is differentiable at to if and only if f2(to) and f2(to) exist and

F2(to) = F2(to) = £ (to).
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Consider
t>4+t  for te{1,2,3},

f(t) =
t+1 for te[-1,1),

where [—1,1) is the real-valued interval. Note that f is continuous on

[-1,1) U {1,2,3}.

Also,
0 - Y=L
_ f(2) — f(t)
- t—|>r111— 2—t
R ) L
t|—|>1— 2—t t|—|>1— 2t 4

o’
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and

Therefore,
Khaled Zennir

— i
ol o(l)—t

o f ()
t—1+ 2—t

— i 6—t>—t

N t—l>1+ 2—t

= lim w
t—1+ 2—t

= )

= 4
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Consider
i for te[-2,2),
f(t) =
t2+t  for te{24,8]}.
We have
f(o(2)) — f(t
2@ = tim (@)=
t—>2—  o(2)—t
I OB
t—2— 4—t
20— (t+3) . 17—t 15
= || —_— = ||m = —
t—2— 4 —t t—2— 4 —t 2
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and

Therefore,

Hence, f is not differentiable at t = 2.

lim
t—2+

f(a(2)) — f(2)

o(2) -t
f(4) — f(t)
=
20— t2 —t

4—t

F2(2) # F2(2).
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Example

Consider
1 for te{3,5,7,9},

f(t) =
3 for telo,3),

where [0, 3) is the real-valued interval. We have

f(o(3)) — £(¢)

A o .
—3) = t|_|g1_ o(3)—t
—im f(5) — f(t)
t—3— 5—t
= lim it lim 2 1

t—3— b —t t—>3—5—t:

Khaled Zennir Time Scales Analysis Lecture 9 October 7, 2025 68 /69



and
f(o(3)) — f(t)
A _
fF@) = thg]—s— o(3)—t
L B = f()
t—3+ 5—t
.o 1-1
= lim ——
t—=3+5—t

Consequently,
FA(3) # F2(3).

Hence, f is not differentiable at 3.
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