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Assume that f is defined on Df C T. Let ty € T.

Definition

We say that f(tp) is a local maximum value of f if there exists 6 > 0 so
that
f(t) < f(tg) forall te (ty—3,to+ )N Df

and f(p(to)), f(o(to)) < f(to), or a local minimum value of f if there
exists 9 > 0 such that

f(t) > f(to) forall te (ty—d,to+ )N Dy

and f(p(tp)), f(c(to)) > f(to). The point to is called a local extreme point
of f, more specifically, a local maximum or local minimum point of f.
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Let f be delta and nabla differentiable in a neighbourhood (ty — 0, ty + 0)
of tg. If FA(t) <0 in [to, to + &) and FV(t) > 0 in (to — 5, to], then to is a
local maximum point of f.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025



Let ty be an isolated point. Then

p(to) <ty < O’(to)

_ f(o(to)) — f(to) _ f(to) — f(p(t0))
(ko) = o(to) — to <0, () = to — p(to) =0

Therefore, f(ty) > f(o(to)) and f(to) > f(p(to)). Also, there exists

91 > 0 such that f(t) < f(tp) for all t € (to — 01, to + 61). Consequently,

tp is a local maximum point.

Let ty be left-dense and right-scattered. As above, we have that

f(o(to)) < f(to). Since to is left-dense, we have that Y (ty) = f'(tp) and
there exists 61 > 0 so that £V (t) = f/(t) for every t € (to — 01, to]. O
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For every t; € (ty — d1, to], there exists £ € (t1, to) such that

_ f(a) — f(to)
B tp — 1o ’

f'(€1)

Because f'(£1) > 0, we obtain that f(t1) < f(tp). Consequently, there
exists 9 > 0, 02 < d1, such that for every t € (typ — 02, tp + d2), we have
that f(t) < f(ty). Therefore, ty is a local maximum point. The cases
when tg is left-scattered and right-dense and when ty is dense are left to

the reader for exercise.

Ol
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As in the proof of Theorem 2, one can prove the following theorem.

Let f be delta and nabla differentiable in a neighbourhood (ty — 0, ty + 0)
of tg. If FA(t) >0 in [to, to + &) and fV(t) <0 in (to — 5, to], then to is a
local minimum point of f.
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Let T = Z. Consider the function
f(t) = t> — 5t + 4.
Then
fA(t)=o(t)+t—-5=t+1+t—5=2t—4
and
PR = plE) k= = =T r=5 =25 =0
Hence,
fA(t) <0 and fY(t)>0
iff
2t—4<0 and 2t—6>0
iff
t<2 and t>3.
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Example

Therefore, f has no local maximum points. Also,
fA(t)>0 and fY(t)<0
iff
2t—4>0 and 2t—6<0
iff
t>2 and t<3.

Consequently, t =2 and t = 3 are local minimum points. We have

£(2) = £(3) = —2.
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Let T = Z. We will find the local extreme values of the function

t+1
f(t) = ——.
(1) t24+1

Here, o(t) =t + 1, p(t) =t — 1. Also,

2+ 1—(t+1)(o(t)+ t)
FA) = E+D((t+12+1)
2 +1—(t+1)(t+1+1t)
(t2 4+ 1)(t2 + 2t + 2)

t24+1—(t+1)(2t +1)
(t2+1)(t? + 2t +2)

t24+1— (22 +t+2t+1)
(t2 +1)(t? + 2t + 2)
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t2+1-2t2-3t-1
(t2+1)(t2 + 2t +2)
—t2 — 3¢
(t2+1)(t? + 2t + 2)
t(t+3)
(2 +1)(t2+2t+2)

and

t2+1—(t+1)(p(t) + t)
(2+1)((t—1)%2+1)

2+ 1—(t+1)(2t—1)
(2 +1)(t2 — 2t + 2)

FY(t)
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2+1— (22— t+2t— 1)
(t2+1)(t? — 2t +2)

P24+1-—22—t+1
(2 4+ 1)(t2 -2t +2)

—t?2—t+2
(24 1)(t? -2t +2)

t2+t—2
(t24+1)(t2 — 2t +2)

(t+2)(t—1)
(2 +1)(t2 -2t +2)

Hence,
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fA(t) <0 and fY(t)>0

iff
t(t+3) (t+2)(t—1)
— <0 d -
(t2+1)(t2+2t+2) — an (t2+1)(t2 -2t +2) —
iff
t(t+3)>0 and (t—1)(t+2)<0
so that
t=0 and t=1
Therefore,
frnax = F(0) = £(1) = 1.

Also,

fA(t)>0 and fY(t)<0
iff

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 12/33



t(t+3) (t+2)(t—1)
— >0 and — <0
(P+1)(2+2t+2) — an (2 +1)(t2—2t+2) —
iff
t(t+3)<0 and (t—1)(t+2)>0
so that
t=-2 and t=-1
Consequently,
—2+41 1
fmin =f(-2) = - —C
(=2) 4+1
and
fmin = f(—=1) = 0.
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Let T = 2o We will find the extreme values of the function

242

for t > 4.
t+2 -

F(t)

Here, o(t) = 2t, p(t) = %t forall t € T and t > 4. Then, for t > 4, we
have
(a(t) + 1)(t +2) = (* +2)
(t+2)(2t +2)
3t(t+2) — (t2+2)
2(t+1)(t+2)

FA() =

32+ 6t —t2—2
2(t+1)(t + 2)

t24+3t—1
(t+1)(t+2)
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and
(p() + £)(¢ +2) = (2 +2)
(t+2)(3t+2)

St(t+2)—t? -2
(t+2) (3t +2)
3243t —12-2
(t+2)(3t+2)

T2 43t -2
(t+2)(it+2)

t?> 4+ 6t —4
(t+2)(t+4)

FY(t) =

Note that f2(t) > 0 and fV(t) > 0 for all t > 4. Therefore, the function
f has no local extreme values.
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Definition

Suppose that f is A-differentiable and V-differentiable at t;. We say that
to is a critical point of f if

fA(t) <0 and fY(tg) >0

or

fA(to) >0 and fv(to) <0.

The least (greatest) value of a continuous function f on a given interval
[a, b] is attained at the critical points of f or at the endpoints of the
interval [a, b].
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Example

Let T = 2No. We will prove that

t2 42
t+3

2% forall teT.

We have o(t) = 2t for all t € T and

(t+o(t))(t+3) — (£ +2)
(t+3)(2t+3)
3t(t+3) —t2 -2
(t+3)(2t+3)

FA(1) =
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3t2 40t —t2 —2
(t+3)(2t +3)
2t 49t — 2

= 13 ="

for all t € T. Consequently, f is increasing in T. Hence

F(t) > F(1) = % forall teT.
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Example

Let T = 3N, We will find a positive constant a such that
1+alogt<t® forall teT.

Let
f(t)=t>—alogt—1, teT.

Here, o(t) = 3t for all t € T and

logo(t) — logt
FA(t) = —a——
(t) o(t)+t—a (1)t
L o aIog(3t) —log t
3t—t

- 4t—a°T3 forall teT.
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Since S e ®
°2gt < °§ forall teT,
we conclude that
| I
4t—302gt3 24—3Og3 forall teT.

Hence, if 0 < a < %, then f is increasing in T. From here,

f(t)>f(1)=0 forall teT andfor 0<a<

log3
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Suppose that 7 : T — R.

Definition

The function f is called convex if for all t;,t, € T and for all A € [0, 1],
the inequality

F(At + (1= N)ta) < M (t1) + (1 — N)f(t2)

holds.

Definition

The function f is called strictly convex if for all t1, t, € T with t; # t> and
for all A € (0,1), the inequality

F(At + (1= N)t) < AF(t1) + (1 — \)f(t2)

holds.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 21/33



The function f is said to be (strictly) concave if —f is (strictly) convex.

Let f be twice delta differentiable on (a, b) and fA2(t) > 0 for all
t € (a,b). Then f is convex.

A,
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Let t1,t, € T, t; < tp, and A € (0,1). Then

AM(t)+ (1= Nf() — F(At1 + (1 — Nto)
=M (1) + (1= NFf(t) — (1= A+ NF(Aty + (1 — Nt2)

=AMf(t1) —f(At1 + (L = N)t2)) + (1 = A)(f(r2) — Ff(At1 + (1 — Nt2).
(1)

By the mean value theorem, it follows that there exist O
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§1€(t, M1+ (1= AN)t2) and & € (Mt + (1 - N)to, t)

so that

f(tl) = f()\tl ol (1 = )\)tz) > fA(gl)(tl — Aty — (1 = /\)I‘Q)

= (1-NFf3&)(t - t)
and

f(t) — fFA1+ (1= Nt2) > FA&) (-t — (1 —Nb)

= MA(&)(t2 — tr).
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By (1), we obtain

AM(t1) + (1= Nf(t2) — f(At1 + (1 — Nto)
> A1 = N2 (E)(t — t2) + A1 — NFA(&)(t — 1) (2)

= AL = A)(FA(&) — F2(&)) (1 — t2).

By the mean value theorem, it follows that there exists &3 € (&1, &2) so
that []

v
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Proof |
FA(&) — FA(&) < FAA(&) (4 - &)

From the last inequality and from (2), we obtain

M(t) + (1= N () = FAts + (1= Nt) > AL = N)FE4(&)

x(& — &)(t — t2)

Vv

0,

which completes the proof. O
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As in Theorem 21, one can prove the following theorem.

Let f be twice delta differentiable on (a, b) and fA2(t) < 0 for all
t € (a,b). Then f is concave.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025



Let T = Z. Consider
f(t)=t3 —7t> 4+t —10.
Here, o(t) =t+1 and

FA(L) = (0(1)? +to(t) + 2 —7(o(t) + t) + 1
= (t+1P+tt+)+2-7(t+1+t)+1
= 242 +1+2+t+2-14t—-7+1
= 3t2 11t -5,

FAA(t) = 3(o(t)+1t)—11
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Hence,

fAR(t)>0 for t>2 and fA8(t)<0 for t<1.

Therefore, f is convex for t > 2 and concave for t < 1.
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Let T = 2o Consider

Here, o(t) = 2t and

FA(t) = (0(t)) + t(o(t))* + 2o (t) + £
—((a(t)? + to(t) + t3) — (o(t) + 1) -1

= 8P +ard 23+ 2 — (42 422+ t2) — (2t + 1) — 1

= 1583 — 7> -3t —1,
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fAA(t) = 15((o(t))? + to(t) + t2) — 7(o(t) + t) — 3
= 1542+ 22 +t3) —7(2t +t) -3

= 105t% — 21t — 3.

Hence, f22(t) > 0 for all t € T. Therefore, the function f is strictly
convex in T.
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Let T = 3o Consider the function
t—3
f(t) = ——.
( ) t+2
We have o(t) = 3t and
t+2—(t—3)
At = —— =7
(1) (t+2)(3t+2)
B 5
3242t +6t+4
- 5
~ 3t24-8t+4’
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3(o(t)+t)+8

(3t2 + 8t + 4)(3(o(t))? + 8o (t) + 4)
12t + 8

3t2 + 8t + 4)(27t2 + 24t + 4)

fAA(t) = -5

= _5(

3t+2
(3t2 + 8t + 4)(27t2 + 24t + 4)

= -20

< 0 forall teT.

Therefore, f is a strictly concave function in T.
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