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Assume that f is defined on Df ⊂ T. Let t0 ∈ T.

Definition

We say that f (t0) is a local maximum value of f if there exists δ > 0 so
that

f (t) ≤ f (t0) for all t ∈ (t0 − δ, t0 + δ) ∩ Df

and f (ρ(t0)), f (σ(t0)) ≤ f (t0), or a local minimum value of f if there
exists δ > 0 such that

f (t) ≥ f (t0) for all t ∈ (t0 − δ, t0 + δ) ∩ Df

and f (ρ(t0)), f (σ(t0)) ≥ f (t0). The point t0 is called a local extreme point
of f , more specifically, a local maximum or local minimum point of f .
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Theorem

Let f be delta and nabla differentiable in a neighbourhood (t0 − δ, t0 + δ)
of t0. If f

∆(t) ≤ 0 in [t0, t0 + δ) and f ∇(t) ≥ 0 in (t0 − δ, t0], then t0 is a
local maximum point of f .
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Proof.

Let t0 be an isolated point. Then

ρ(t0) < t0 < σ(t0)

and

f ∆(t0) =
f (σ(t0))− f (t0)

σ(t0)− t0
≤ 0, f ∇(t0) =

f (t0)− f (ρ(t0))

t0 − ρ(t0)
≥ 0.

Therefore, f (t0) ≥ f (σ(t0)) and f (t0) ≥ f (ρ(t0)). Also, there exists
δ1 > 0 such that f (t) ≤ f (t0) for all t ∈ (t0 − δ1, t0 + δ1). Consequently,
t0 is a local maximum point.
Let t0 be left-dense and right-scattered. As above, we have that
f (σ(t0)) ≤ f (t0). Since t0 is left-dense, we have that f ∇(t0) = f ′(t0) and
there exists δ1 > 0 so that f ∇(t) = f ′(t) for every t ∈ (t0 − δ1, t0].
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Proof.

For every t1 ∈ (t0 − δ1, t0], there exists ξ1 ∈ (t1, t0) such that

f ′(ξ1) =
f (t1)− f (t0)

t1 − t0
.

Because f ′(ξ1) ≥ 0, we obtain that f (t1) ≤ f (t0). Consequently, there
exists δ2 > 0, δ2 ≤ δ1, such that for every t ∈ (t0 − δ2, t0 + δ2), we have
that f (t) ≤ f (t0). Therefore, t0 is a local maximum point. The cases
when t0 is left-scattered and right-dense and when t0 is dense are left to
the reader for exercise.
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As in the proof of Theorem 2, one can prove the following theorem.

Theorem

Let f be delta and nabla differentiable in a neighbourhood (t0 − δ, t0 + δ)
of t0. If f

∆(t) ≥ 0 in [t0, t0 + δ) and f ∇(t) ≤ 0 in (t0 − δ, t0], then t0 is a
local minimum point of f .
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Example

Let T = Z. Consider the function

f (t) = t2 − 5t + 4.

Then
f ∆(t) = σ(t) + t − 5 = t + 1 + t − 5 = 2t − 4

and
f ∇(t) = ρ(t) + t − 5 = t − 1 + t − 5 = 2t − 6.

Hence,
f ∆(t) ≤ 0 and f ∇(t) ≥ 0

iff
2t − 4 ≤ 0 and 2t − 6 ≥ 0

iff
t ≤ 2 and t ≥ 3.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 7 / 33



Example

Therefore, f has no local maximum points. Also,

f ∆(t) ≥ 0 and f ∇(t) ≤ 0

iff
2t − 4 ≥ 0 and 2t − 6 ≤ 0

iff
t ≥ 2 and t ≤ 3.

Consequently, t = 2 and t = 3 are local minimum points. We have

f (2) = f (3) = −2.
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Example

Let T = Z. We will find the local extreme values of the function

f (t) =
t + 1

t2 + 1
.

Here, σ(t) = t + 1, ρ(t) = t − 1. Also,

f ∆(t) =
t2 + 1− (t + 1)(σ(t) + t)

(t2 + 1)((t + 1)2 + 1)

=
t2 + 1− (t + 1)(t + 1 + t)

(t2 + 1)(t2 + 2t + 2)

=
t2 + 1− (t + 1)(2t + 1)

(t2 + 1)(t2 + 2t + 2)

=
t2 + 1− (2t2 + t + 2t + 1)

(t2 + 1)(t2 + 2t + 2)
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Example

=
t2 + 1− 2t2 − 3t − 1

(t2 + 1)(t2 + 2t + 2)

=
−t2 − 3t

(t2 + 1)(t2 + 2t + 2)

= − t(t + 3)

(t2 + 1)(t2 + 2t + 2)

and

f ∇(t) =
t2 + 1− (t + 1)(ρ(t) + t)

(t2 + 1)((t − 1)2 + 1)

=
t2 + 1− (t + 1)(2t − 1)

(t2 + 1)(t2 − 2t + 2)
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Example

=
t2 + 1− (2t2 − t + 2t − 1)

(t2 + 1)(t2 − 2t + 2)

=
t2 + 1− 2t2 − t + 1

(t2 + 1)(t2 − 2t + 2)

=
−t2 − t + 2

(t2 + 1)(t2 − 2t + 2)

= − t2 + t − 2

(t2 + 1)(t2 − 2t + 2)

= − (t + 2)(t − 1)

(t2 + 1)(t2 − 2t + 2)
.

Hence,
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Example

f ∆(t) ≤ 0 and f ∇(t) ≥ 0

iff

− t(t + 3)

(t2 + 1)(t2 + 2t + 2)
≤ 0 and − (t + 2)(t − 1)

(t2 + 1)(t2 − 2t + 2)
≥ 0

iff
t(t + 3) ≥ 0 and (t − 1)(t + 2) ≤ 0

so that
t = 0 and t = 1.

Therefore,
fmax = f (0) = f (1) = 1.

Also,
f ∆(t) ≥ 0 and f ∇(t) ≤ 0

iff
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Example

− t(t + 3)

(t2 + 1)(t2 + 2t + 2)
≥ 0 and − (t + 2)(t − 1)

(t2 + 1)(t2 − 2t + 2)
≤ 0

iff
t(t + 3) ≤ 0 and (t − 1)(t + 2) ≥ 0

so that
t = −2 and t = −1.

Consequently,

fmin = f (−2) =
−2 + 1

4 + 1
= −1

5

and
fmin = f (−1) = 0.
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Example

Let T = 2N0 . We will find the extreme values of the function

f (t) =
t2 + 2

t + 2
for t ≥ 4.

Here, σ(t) = 2t, ρ(t) = 1
2 t for all t ∈ T and t ≥ 4. Then, for t ≥ 4, we

have

f ∆(t) =
(σ(t) + t)(t + 2)− (t2 + 2)

(t + 2)(2t + 2)

=
3t(t + 2)− (t2 + 2)

2(t + 1)(t + 2)

=
3t2 + 6t − t2 − 2

2(t + 1)(t + 2)

=
t2 + 3t − 1

(t + 1)(t + 2)
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Example

and

f ∇(t) =
(ρ(t) + t)(t + 2)− (t2 + 2)

(t + 2)
(
1
2 t + 2

)
=

3
2 t(t + 2)− t2 − 2

(t + 2)
(
1
2 t + 2

)
=

3
2 t

2 + 3t − t2 − 2

(t + 2)
(
1
2 t + 2

)
=

1
2 t

2 + 3t − 2

(t + 2)
(
1
2 t + 2

)
=

t2 + 6t − 4

(t + 2)(t + 4)
.

Note that f ∆(t) ≥ 0 and f ∇(t) ≥ 0 for all t ≥ 4. Therefore, the function
f has no local extreme values.
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Definition

Suppose that f is ∆-differentiable and ∇-differentiable at t0. We say that
t0 is a critical point of f if

f ∆(t0) ≤ 0 and f ∇(t0) ≥ 0

or
f ∆(t0) ≥ 0 and f ∇(t0) ≤ 0.

The least (greatest) value of a continuous function f on a given interval
[a, b] is attained at the critical points of f or at the endpoints of the
interval [a, b].
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Example

Let T = 2N0 . We will prove that

t2 + 2

t + 3
≥ 3

4
for all t ∈ T.

We have σ(t) = 2t for all t ∈ T and

f ∆(t) =
(t + σ(t))(t + 3)− (t2 + 2)

(t + 3)(2t + 3)

=
3t(t + 3)− t2 − 2

(t + 3)(2t + 3)
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Example

=
3t2 + 9t − t2 − 2

(t + 3)(2t + 3)

=
2t2 + 9t − 2

(t + 3)(2t + 3)
≥ 0

for all t ∈ T. Consequently, f is increasing in T. Hence

f (t) ≥ f (1) =
3

4
for all t ∈ T.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 18 / 33



Example

Let T = 3N0 . We will find a positive constant a such that

1 + a log t ≤ t2 for all t ∈ T.

Let
f (t) = t2 − a log t − 1, t ∈ T.

Here, σ(t) = 3t for all t ∈ T and

f ∆(t) = σ(t) + t − a
log σ(t)− log t

σ(t)− t

= 3t + t − a
log(3t)− log t

3t − t

= 4t − a
log 3

2t
for all t ∈ T.
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Example

Since
log 3

2t
≤ log 3

2
for all t ∈ T,

we conclude that

4t − a
log 3

2t
≥ 4− a

log 3

2
for all t ∈ T.

Hence, if 0 < a < 8
log 3 , then f is increasing in T. From here,

f (t) ≥ f (1) = 0 for all t ∈ T and for 0 < a <
8

log 3
.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 20 / 33



Suppose that f : T → R.

Definition

The function f is called convex if for all t1, t2 ∈ T and for all λ ∈ [0, 1],
the inequality

f (λt1 + (1− λ)t2) ≤ λf (t1) + (1− λ)f (t2)

holds.

Definition

The function f is called strictly convex if for all t1, t2 ∈ T with t1 ̸= t2 and
for all λ ∈ (0, 1), the inequality

f (λt1 + (1− λ)t2) < λf (t1) + (1− λ)f (t2)

holds.
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Definition

The function f is said to be (strictly) concave if −f is (strictly) convex.

Theorem

Let f be twice delta differentiable on (a, b) and f ∆∆(t) ≥ 0 for all
t ∈ (a, b). Then f is convex.
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Proof.

Let t1, t2 ∈ T, t1 < t2, and λ ∈ (0, 1). Then

λf (t1) + (1− λ)f (t2)− f (λt1 + (1− λ)t2)

= λf (t1) + (1− λ)f (t2)− (1− λ+ λ)f (λt1 + (1− λ)t2)

= λ(f (t1)− f (λt1 + (1− λ)t2)) + (1− λ)(f (t2)− f (λt1 + (1− λ)t2).
(1)

By the mean value theorem, it follows that there exist
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Proof.

ξ1 ∈ (t1, λt1 + (1− λ)t2) and ξ2 ∈ (λt1 + (1− λ)t2, t2)

so that

f (t1)− f (λt1 + (1− λ)t2) ≥ f ∆(ξ1)(t1 − λt1 − (1− λ)t2)

= (1− λ)f ∆(ξ1)(t1 − t2)

and

f (t2)− f (λt1 + (1− λ)t2) ≥ f ∆(ξ2)(t2 − λt1 − (1− λ)t2)

= λf ∆(ξ2)(t2 − t1).
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Proof.

By (1), we obtain

λf (t1) + (1− λ)f (t2)− f (λt1 + (1− λ)t2)

≥ λ(1− λ)f ∆(ξ1)(t1 − t2) + λ(1− λ)f ∆(ξ2)(t2 − t1)

= λ(1− λ)(f ∆(ξ1)− f ∆(ξ2))(t1 − t2).

(2)

By the mean value theorem, it follows that there exists ξ3 ∈ (ξ1, ξ2) so
that
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Proof.

f ∆(ξ1)− f ∆(ξ2) ≤ f ∆∆(ξ3)(ξ1 − ξ2).

From the last inequality and from (2), we obtain

λf (t1) + (1− λ)f (t2)− f (λt1 + (1− λ)t2) ≥ λ(1− λ)f ∆∆(ξ3)

×(ξ1 − ξ2)(t1 − t2)

≥ 0,

which completes the proof.
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As in Theorem 21, one can prove the following theorem.

Theorem

Let f be twice delta differentiable on (a, b) and f ∆∆(t) ≤ 0 for all
t ∈ (a, b). Then f is concave.

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 27 / 33



Example

Let T = Z. Consider

f (t) = t3 − 7t2 + t − 10.

Here, σ(t) = t + 1 and

f ∆(t) = (σ(t))2 + tσ(t) + t2 − 7(σ(t) + t) + 1

= (t + 1)2 + t(t + 1) + t2 − 7(t + 1 + t) + 1

= t2 + 2t + 1 + t2 + t + t2 − 14t − 7 + 1

= 3t2 − 11t − 5,

f ∆∆(t) = 3(σ(t) + t)− 11

= 3(t + 1 + t)− 11

= 6t − 8.
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Example

Hence,

f ∆∆(t) ≥ 0 for t ≥ 2 and f ∆∆(t) ≤ 0 for t ≤ 1.

Therefore, f is convex for t ≥ 2 and concave for t ≤ 1.
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Example

Let T = 2N0 . Consider

f (t) = t4 − t3 − t2 − t.

Here, σ(t) = 2t and

f ∆(t) = (σ(t))3 + t(σ(t))2 + t2σ(t) + t3

−((σ(t))2 + tσ(t) + t2)− (σ(t) + t)− 1

= 8t3 + 4t3 + 2t3 + t3 − (4t2 + 2t2 + t2)− (2t + t)− 1

= 15t3 − 7t2 − 3t − 1,

Svetlin G. Georgiev Time Scales Analysis Lecture 10 October 10, 2025 30 / 33



Example

f ∆∆(t) = 15((σ(t))2 + tσ(t) + t2)− 7(σ(t) + t)− 3

= 15(4t2 + 2t2 + t2)− 7(2t + t)− 3

= 105t2 − 21t − 3.

Hence, f ∆∆(t) > 0 for all t ∈ T. Therefore, the function f is strictly
convex in T.
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Example

Let T = 3N0 . Consider the function

f (t) =
t − 3

t + 2
.

We have σ(t) = 3t and

f ∆(t) =
t + 2− (t − 3)

(t + 2)(3t + 2)

=
5

3t2 + 2t + 6t + 4

=
5

3t2 + 8t + 4
,
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Example

f ∆∆(t) = −5
3(σ(t) + t) + 8

(3t2 + 8t + 4)(3(σ(t))2 + 8σ(t) + 4)

= −5
12t + 8

(3t2 + 8t + 4)(27t2 + 24t + 4)

= −20
3t + 2

(3t2 + 8t + 4)(27t2 + 24t + 4)

< 0 for all t ∈ T.

Therefore, f is a strictly concave function in T.
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