Time Scales Analysis Lecture 10

Extreme Values. Convex and Concave Functions. Completely Delta Differentiable Functions

Svetlin G. Georgiev

October 10, 2025

Assume that f is defined on $D_f \subset \mathbb{T}$. Let $t_0 \in \mathbb{T}$.

Definition

We say that $f(t_0)$ is a *local maximum value* of f if there exists $\delta > 0$ so that

$$f(t) \le f(t_0)$$
 for all $t \in (t_0 - \delta, t_0 + \delta) \cap D_f$

and $f(\rho(t_0)), f(\sigma(t_0)) \leq f(t_0)$, or a *local minimum value* of f if there exists $\delta > 0$ such that

$$f(t) \geq f(t_0)$$
 for all $t \in (t_0 - \delta, t_0 + \delta) \cap D_f$

and $f(\rho(t_0)), f(\sigma(t_0)) \ge f(t_0)$. The point t_0 is called a *local extreme point* of f, more specifically, a *local maximum* or *local minimum* point of f.

Theorem

Let f be delta and nabla differentiable in a neighbourhood $(t_0 - \delta, t_0 + \delta)$ of t_0 . If $f^{\Delta}(t) \leq 0$ in $[t_0, t_0 + \delta)$ and $f^{\nabla}(t) \geq 0$ in $(t_0 - \delta, t_0]$, then t_0 is a local maximum point of f.

Let t_0 be an isolated point. Then

$$\rho(t_0) < t_0 < \sigma(t_0)$$

and

$$f^{\Delta}(t_0) = \frac{f(\sigma(t_0)) - f(t_0)}{\sigma(t_0) - t_0} \leq 0, \quad f^{\nabla}(t_0) = \frac{f(t_0) - f(\rho(t_0))}{t_0 - \rho(t_0)} \geq 0.$$

Therefore, $f(t_0) \geq f(\sigma(t_0))$ and $f(t_0) \geq f(\rho(t_0))$. Also, there exists $\delta_1 > 0$ such that $f(t) \leq f(t_0)$ for all $t \in (t_0 - \delta_1, t_0 + \delta_1)$. Consequently, t_0 is a local maximum point.

Let t_0 be left-dense and right-scattered. As above, we have that $f(\sigma(t_0)) \leq f(t_0)$. Since t_0 is left-dense, we have that $f^{\nabla}(t_0) = f'(t_0)$ and there exists $\delta_1 > 0$ so that $f^{\nabla}(t) = f'(t)$ for every $t \in (t_0 - \delta_1, t_0]$.

For every $t_1 \in (t_0 - \delta_1, t_0]$, there exists $\xi_1 \in (t_1, t_0)$ such that

$$f'(\xi_1) = \frac{f(t_1) - f(t_0)}{t_1 - t_0}.$$

Because $f'(\xi_1) \geq 0$, we obtain that $f(t_1) \leq f(t_0)$. Consequently, there exists $\delta_2 > 0$, $\delta_2 \leq \delta_1$, such that for every $t \in (t_0 - \delta_2, t_0 + \delta_2)$, we have that $f(t) \leq f(t_0)$. Therefore, t_0 is a local maximum point. The cases when t_0 is left-scattered and right-dense and when t_0 is dense are left to the reader for exercise.

As in the proof of Theorem 2, one can prove the following theorem.

Theorem

Let f be delta and nabla differentiable in a neighbourhood $(t_0 - \delta, t_0 + \delta)$ of t_0 . If $f^{\Delta}(t) \geq 0$ in $[t_0, t_0 + \delta)$ and $f^{\nabla}(t) \leq 0$ in $(t_0 - \delta, t_0]$, then t_0 is a local minimum point of f.

Let $\mathbb{T} = \mathbb{Z}$. Consider the function

$$f(t)=t^2-5t+4.$$

Then

$$f^{\Delta}(t) = \sigma(t) + t - 5 = t + 1 + t - 5 = 2t - 4$$

and

$$f^{\nabla}(t) = \rho(t) + t - 5 = t - 1 + t - 5 = 2t - 6.$$

Hence,

$$f^{\Delta}(t) \leq 0$$
 and $f^{\nabla}(t) \geq 0$

iff

$$2t - 4 \le 0$$
 and $2t - 6 \ge 0$

iff

$$t \le 2$$
 and $t \ge 3$.

Therefore, f has no local maximum points. Also,

$$f^{\Delta}(t) \geq 0$$
 and $f^{\nabla}(t) \leq 0$

iff

$$2t - 4 \ge 0$$
 and $2t - 6 \le 0$

iff

$$t \ge 2$$
 and $t \le 3$.

Consequently, t = 2 and t = 3 are local minimum points. We have

$$f(2) = f(3) = -2.$$

Let $\mathbb{T} = \mathbb{Z}$. We will find the local extreme values of the function

$$f(t)=\frac{t+1}{t^2+1}.$$

Here,
$$\sigma(t) = t + 1$$
, $\rho(t) = t - 1$. Also,

$$f^{\Delta}(t) = \frac{t^2 + 1 - (t+1)(\sigma(t) + t)}{(t^2 + 1)((t+1)^2 + 1)}$$

$$= \frac{t^2 + 1 - (t+1)(t+1+t)}{(t^2 + 1)(t^2 + 2t + 2)}$$

$$= \frac{t^2 + 1 - (t+1)(2t+1)}{(t^2 + 1)(t^2 + 2t + 2)}$$

$$= \frac{t^2 + 1 - (2t^2 + t + 2t + 1)}{(t^2 + 1)(t^2 + 2t + 2)}$$

$$= \frac{t^2 + 1 - 2t^2 - 3t - 1}{(t^2 + 1)(t^2 + 2t + 2)}$$

$$= \frac{-t^2 - 3t}{(t^2 + 1)(t^2 + 2t + 2)}$$

$$= -\frac{t(t+3)}{(t^2 + 1)(t^2 + 2t + 2)}$$

and

$$f^{\nabla}(t) = \frac{t^2 + 1 - (t+1)(\rho(t) + t)}{(t^2 + 1)((t-1)^2 + 1)}$$
$$= \frac{t^2 + 1 - (t+1)(2t-1)}{(t^2 + 1)(t^2 - 2t + 2)}$$

$$= \frac{t^2 + 1 - (2t^2 - t + 2t - 1)}{(t^2 + 1)(t^2 - 2t + 2)}$$

$$= \frac{t^2 + 1 - 2t^2 - t + 1}{(t^2 + 1)(t^2 - 2t + 2)}$$

$$= \frac{-t^2 - t + 2}{(t^2 + 1)(t^2 - 2t + 2)}$$

$$= -\frac{t^2 + t - 2}{(t^2 + 1)(t^2 - 2t + 2)}$$

$$= -\frac{(t + 2)(t - 1)}{(t^2 + 1)(t^2 - 2t + 2)}.$$

Hence.

$$f^{\Delta}(t) \leq 0$$
 and $f^{\nabla}(t) \geq 0$

iff

$$-\frac{t(t+3)}{(t^2+1)(t^2+2t+2)} \leq 0 \quad \text{and} \quad -\frac{(t+2)(t-1)}{(t^2+1)(t^2-2t+2)} \geq 0$$

iff

$$t(t+3) \ge 0$$
 and $(t-1)(t+2) \le 0$

so that

$$t = 0$$
 and $t = 1$.

Therefore,

$$f_{\text{max}} = f(0) = f(1) = 1.$$

Also,

$$f^{\Delta}(t) \geq 0$$
 and $f^{\nabla}(t) \leq 0$

iff

$$-\frac{t(t+3)}{(t^2+1)(t^2+2t+2)} \geq 0 \quad \text{and} \quad -\frac{(t+2)(t-1)}{(t^2+1)(t^2-2t+2)} \leq 0$$

iff

$$t(t+3) \le 0$$
 and $(t-1)(t+2) \ge 0$

so that

$$t=-2$$
 and $t=-1$.

Consequently,

$$f_{\min} = f(-2) = \frac{-2+1}{4+1} = -\frac{1}{5}$$

and

$$f_{\min}=f(-1)=0.$$

Let $\mathbb{T}=2^{\mathbb{N}_0}$. We will find the extreme values of the function

$$f(t) = \frac{t^2 + 2}{t + 2} \quad \text{for} \quad t \ge 4.$$

Here, $\sigma(t)=2t$, $\rho(t)=\frac{1}{2}t$ for all $t\in\mathbb{T}$ and $t\geq 4$. Then, for $t\geq 4$, we have

$$f^{\Delta}(t) = \frac{(\sigma(t)+t)(t+2)-(t^2+2)}{(t+2)(2t+2)}$$

$$= \frac{3t(t+2)-(t^2+2)}{2(t+1)(t+2)}$$

$$= \frac{3t^2+6t-t^2-2}{2(t+1)(t+2)}$$

$$= \frac{t^2+3t-1}{(t+1)(t+2)}$$

and

$$f^{\nabla}(t) = \frac{(\rho(t)+t)(t+2) - (t^2+2)}{(t+2)(\frac{1}{2}t+2)}$$

$$= \frac{\frac{3}{2}t(t+2) - t^2 - 2}{(t+2)(\frac{1}{2}t+2)}$$

$$= \frac{\frac{3}{2}t^2 + 3t - t^2 - 2}{(t+2)(\frac{1}{2}t+2)}$$

$$= \frac{\frac{1}{2}t^2 + 3t - 2}{(t+2)(\frac{1}{2}t+2)}$$

$$= \frac{t^2 + 6t - 4}{(t+2)(t+4)}.$$

Note that $f^{\Delta}(t) \geq 0$ and $f^{\nabla}(t) \geq 0$ for all $t \geq 4$. Therefore, the function f has no local extreme values.

Definition

Suppose that f is Δ -differentiable and ∇ -differentiable at t_0 . We say that t_0 is a *critical point* of f if

$$f^{\Delta}(t_0) \leq 0$$
 and $f^{\nabla}(t_0) \geq 0$

or

$$f^{\Delta}(t_0) \geq 0$$
 and $f^{\nabla}(t_0) \leq 0$.

The least (greatest) value of a continuous function f on a given interval [a,b] is attained at the critical points of f or at the endpoints of the interval [a,b].

Let $\mathbb{T}=2^{\mathbb{N}_0}.$ We will prove that

$$\frac{t^2+2}{t+3} \geq \frac{3}{4}$$
 for all $t \in \mathbb{T}$.

We have $\sigma(t) = 2t$ for all $t \in \mathbb{T}$ and

$$f^{\Delta}(t) = \frac{(t+\sigma(t))(t+3)-(t^2+2)}{(t+3)(2t+3)}$$
$$= \frac{3t(t+3)-t^2-2}{(t+3)(2t+3)}$$

$$= \frac{3t^2 + 9t - t^2 - 2}{(t+3)(2t+3)}$$
$$= \frac{2t^2 + 9t - 2}{(t+3)(2t+3)} \ge 0$$

for all $t \in \mathbb{T}$. Consequently, f is increasing in \mathbb{T} . Hence

$$f(t) \ge f(1) = \frac{3}{4}$$
 for all $t \in \mathbb{T}$.

Let $\mathbb{T}=3^{\mathbb{N}_0}$. We will find a positive constant a such that

$$1 + a \log t \le t^2$$
 for all $t \in \mathbb{T}$.

Let

$$f(t) = t^2 - a \log t - 1, \quad t \in \mathbb{T}.$$

Here, $\sigma(t) = 3t$ for all $t \in \mathbb{T}$ and

$$f^{\Delta}(t) = \sigma(t) + t - a \frac{\log \sigma(t) - \log t}{\sigma(t) - t}$$
$$= 3t + t - a \frac{\log(3t) - \log t}{3t - t}$$
$$= 4t - a \frac{\log 3}{2t} \quad \text{for all} \quad t \in \mathbb{T}.$$

Since

$$\frac{\log 3}{2t} \le \frac{\log 3}{2} \quad \text{for all} \quad t \in \mathbb{T},$$

we conclude that

$$4t - a \frac{\log 3}{2t} \ge 4 - a \frac{\log 3}{2}$$
 for all $t \in \mathbb{T}$.

Hence, if $0 < a < \frac{8}{\log 3}$, then f is increasing in \mathbb{T} . From here,

$$f(t) \geq f(1) = 0$$
 for all $t \in \mathbb{T}$ and for $0 < a < \frac{8}{\log 3}$.

Suppose that $f : \mathbb{T} \to \mathbb{R}$.

Definition

The function f is called *convex* if for all $t_1, t_2 \in \mathbb{T}$ and for all $\lambda \in [0, 1]$, the inequality

$$f(\lambda t_1 + (1-\lambda)t_2) \leq \lambda f(t_1) + (1-\lambda)f(t_2)$$

holds.

Definition

The function f is called *strictly convex* if for all $t_1, t_2 \in \mathbb{T}$ with $t_1 \neq t_2$ and for all $\lambda \in (0,1)$, the inequality

$$f(\lambda t_1 + (1-\lambda)t_2) < \lambda f(t_1) + (1-\lambda)f(t_2)$$

holds.

Definition

The function f is said to be (*strictly*) *concave* if -f is (strictly) convex.

Theorem

Let f be twice delta differentiable on (a,b) and $f^{\Delta\Delta}(t) \geq 0$ for all $t \in (a,b)$. Then f is convex.

Let $t_1, t_2 \in \mathbb{T}$, $t_1 < t_2$, and $\lambda \in (0,1)$. Then

$$\lambda f(t_1) + (1-\lambda)f(t_2) - f(\lambda t_1 + (1-\lambda)t_2)$$

$$= \lambda f(t_1) + (1 - \lambda)f(t_2) - (1 - \lambda + \lambda)f(\lambda t_1 + (1 - \lambda)t_2)$$

$$= \lambda (f(t_1) - f(\lambda t_1 + (1 - \lambda)t_2)) + (1 - \lambda)(f(t_2) - f(\lambda t_1 + (1 - \lambda)t_2)).$$

By the mean value theorem, it follows that there exist



$$\xi_1 \in (t_1, \lambda t_1 + (1 - \lambda)t_2)$$
 and $\xi_2 \in (\lambda t_1 + (1 - \lambda)t_2, t_2)$

so that

$$f(t_1) - f(\lambda t_1 + (1 - \lambda)t_2) \ge f^{\Delta}(\xi_1)(t_1 - \lambda t_1 - (1 - \lambda)t_2)$$

= $(1 - \lambda)f^{\Delta}(\xi_1)(t_1 - t_2)$

and

$$f(t_2) - f(\lambda t_1 + (1 - \lambda)t_2) \ge f^{\Delta}(\xi_2)(t_2 - \lambda t_1 - (1 - \lambda)t_2)$$

= $\lambda f^{\Delta}(\xi_2)(t_2 - t_1)$.

By (1), we obtain

$$\geq \lambda(1-\lambda)f^{\Delta}(\xi_1)(t_1-t_2)+\lambda(1-\lambda)f^{\Delta}(\xi_2)(t_2-t_1) \tag{2}$$

$$= \lambda(1-\lambda)(f^{\Delta}(\xi_1)-f^{\Delta}(\xi_2))(t_1-t_2).$$

 $\lambda f(t_1) + (1 - \lambda)f(t_2) - f(\lambda t_1 + (1 - \lambda)t_2)$

By the mean value theorem, it follows that there exists $\xi_3 \in (\xi_1, \xi_2)$ so that

$$f^{\Delta}(\xi_1) - f^{\Delta}(\xi_2) \le f^{\Delta\Delta}(\xi_3)(\xi_1 - \xi_2).$$

From the last inequality and from (2), we obtain

$$\lambda f(t_1) + (1-\lambda)f(t_2) - f(\lambda t_1 + (1-\lambda)t_2) \geq \lambda(1-\lambda)f^{\Delta\Delta}(\xi_3)$$

$$\times (\xi_1 - \xi_2)(t_1 - t_2)$$

$$\geq$$
 0,

which completes the proof.

As in Theorem 21, one can prove the following theorem.

Theorem

Let f be twice delta differentiable on (a, b) and $f^{\Delta\Delta}(t) \leq 0$ for all $t \in (a, b)$. Then f is concave.

Let $\mathbb{T} = \mathbb{Z}$. Consider

$$f(t) = t^3 - 7t^2 + t - 10.$$

Here,
$$\sigma(t) = t + 1$$
 and

$$f^{\Delta}(t) = (\sigma(t))^2 + t\sigma(t) + t^2 - 7(\sigma(t) + t) + 1$$

$$= (t+1)^2 + t(t+1) + t^2 - 7(t+1+t) + 1$$

$$= t^2 + 2t + 1 + t^2 + t + t^2 - 14t - 7 + 1$$

$$= 3t^2 - 11t - 5,$$

 $f^{\Delta\Delta}(t) = 3(\sigma(t) + t) - 11$

Hence,

$$f^{\Delta\Delta}(t) \ge 0$$
 for $t \ge 2$ and $f^{\Delta\Delta}(t) \le 0$ for $t \le 1$.

Therefore, f is convex for $t \ge 2$ and concave for $t \le 1$.

Let $\mathbb{T}=2^{\mathbb{N}_0}$. Consider

$$f(t) = t^4 - t^3 - t^2 - t.$$

Here, $\sigma(t) = 2t$ and

$$f^{\Delta}(t) = (\sigma(t))^3 + t(\sigma(t))^2 + t^2\sigma(t) + t^3$$

$$-((\sigma(t))^2 + t\sigma(t) + t^2) - (\sigma(t) + t) - 1$$

$$= 8t^3 + 4t^3 + 2t^3 + t^3 - (4t^2 + 2t^2 + t^2) - (2t + t) - 1$$

$$= 15t^3 - 7t^2 - 3t - 1$$

$$f^{\Delta\Delta}(t) = 15((\sigma(t))^2 + t\sigma(t) + t^2) - 7(\sigma(t) + t) - 3$$

$$= 15(4t^2 + 2t^2 + t^2) - 7(2t + t) - 3$$

$$= 105t^2 - 21t - 3.$$

Hence, $f^{\Delta\Delta}(t) > 0$ for all $t \in \mathbb{T}$. Therefore, the function f is strictly convex in \mathbb{T} .

Let $\mathbb{T}=3^{\mathbb{N}_0}$. Consider the function

$$f(t)=\frac{t-3}{t+2}.$$

We have $\sigma(t) = 3t$ and

$$f^{\Delta}(t) = \frac{t+2-(t-3)}{(t+2)(3t+2)}$$
$$= \frac{5}{3t^2+2t+6t+4}$$
$$= \frac{5}{3t^2+8t+4},$$

$$f^{\Delta\Delta}(t) = -5 \frac{3(\sigma(t) + t) + 8}{(3t^2 + 8t + 4)(3(\sigma(t))^2 + 8\sigma(t) + 4)}$$

$$= -5 \frac{12t + 8}{(3t^2 + 8t + 4)(27t^2 + 24t + 4)}$$

$$= -20 \frac{3t + 2}{(3t^2 + 8t + 4)(27t^2 + 24t + 4)}$$

$$< 0 \text{ for all } t \in \mathbb{T}.$$

Therefore, f is a strictly concave function in \mathbb{T} .

