Time Scales Analysis Lecture 11

Completely Delta Differentiable Functions. Introduction to Integral Calculus on Time Scales

Svetlin G. Georgiev

October 15, 2025

Definition

A function $f: \mathbb{T} \to \mathbb{R}$ is called *completely delta differentiable* at a point $t^0 \in \mathbb{T}^{\kappa}$ if there exist constants A_1 and A_2 such that

$$f(t^0) - f(t) = A_1(t^0 - t) + \alpha(t^0 - t)$$
 for all $t \in U_\delta(t^0)$ (1)

and

$$f(\sigma(t^0)) - f(t) = A_2(\sigma(t^0) - t) + \beta(\sigma(t^0) - t)$$
 for all $t \in U_\delta(t^0)$, (2)

where $U_{\delta}(t^0)$ is a δ -neighbourhood of t^0 and

$$\alpha = \alpha(t^0, t)$$
 and $\beta = \beta(t^0, t)$

are equal to zero for $t = t^0$ such that

$$\lim_{t\to t^0}\alpha(t^0,t)=\lim_{t\to t^0}\beta(t^0,t)=0.$$

Theorem

Let a function $f: \mathbb{T} \to \mathbb{R}$ be continuous and have the first-order delta derivative f^{Δ} in some δ -neighbourhood $U_{\delta}(t^0)$ of the point $t^0 \in \mathbb{T}^{\kappa}$. If f^{Δ} is continuous at the point t^0 , then f is completely delta differentiable at t^0 .

Using the definition of delta derivative, we have that

$$f(\sigma(t^0)) - f(t) = f^{\Delta}(t^0)(\sigma(t^0) - t) + \beta(\sigma(t^0) - t),$$
(3)

where $\beta = \beta(t^0, t)$ and $\beta \to 0$ as $t \to t^0$, i.e., (2) holds. Now, we will prove (1).

Let $t^0 \in \mathbb{T}$ be isolated. Then (1) is satisfied independently of A_1 and α because in this case, $U_{\delta}(t^0)$ consists of the single point t^0 for sufficiently small $\delta > 0$.

Let t^0 be right-dense. In this case, $\sigma(t^0)=t^0$, and (3) coincides with (1). Let t^0 be left-dense and right-scattered. Then for sufficiently small $\delta>0$, any point $t\in U_\delta(t^0)\setminus\{t^0\}$ must satisfy $t< t^0$. By the mean value theorem, we obtain

$$f^{\Delta}(\xi_1)(t^0-t) \leq f(t^0) - f(t) \leq f^{\Delta}(\xi_2)(t^0-t),$$

where $\xi_1, \xi_2 \in [t, t^0)$. Since $\xi_1, \xi_2 \to t^0$ as $t \to t^0$ and f^{Δ} is continuous at t^0 , we have

$$\lim_{t \to t^0} \frac{f(t^0) - f(t)}{t^0 - t} = f^{\Delta}(t^0).$$

Therefore,

$$\frac{f(t^0) - f(t)}{t^0 - t} = f^{\Delta}(t^0) + \alpha,$$

where $\alpha = \alpha(t^0, t)$ and $\alpha \to 0$ as $t \to t^0$. Consequently, (1) holds for $A_1 = f^{\Delta}(t^0)$.

Definition

Let $\overline{\mathbb{T}} = \mathbb{T} \cup \{\sup \mathbb{T}\} \cup \{\inf \mathbb{T}\}$. If $\infty \in \overline{\mathbb{T}}$, then ∞ is called left-dense. If $-\infty \in \overline{\mathbb{T}}$, then $-\infty$ is called right-dense.

Remark

For any left-dense point $t_0 \in \overline{\mathbb{T}}$ and for any $\varepsilon > 0$, we set

$$L_{\varepsilon}(t_0) = \{t \in \mathbb{T}: \ 0 < t_0 - t < \varepsilon\}.$$

If $t_0 \in \overline{\mathbb{T}}$ is left-dense, then $L_{\varepsilon}(t_0)$ is nonempty. If $\infty \in \overline{\mathbb{T}}$, then

$$L_arepsilon(\infty) = \left\{ t \in \mathbb{T}: \ t > rac{1}{arepsilon}
ight\}.$$

For a right-dense point $t_1 \in \overline{\mathbb{T}}$, we define

$$R_{\varepsilon}(t_1) = \{t \in \mathbb{T} : 0 < t - t_1 < \varepsilon\}.$$

For every right-dense point $t_1 \in \overline{\mathbb{T}}$, the set $R_{\varepsilon}(t_1)$ is nonempty. If $-\infty \in \overline{\mathbb{T}}$, then

$$R_{arepsilon}(-\infty) = \left\{ t \in \mathbb{T}: \ t < -rac{1}{arepsilon}
ight\}.$$

Definition

Let $h: \mathbb{T} \to \mathbb{R}$.

1 Let $t_0 \in \overline{\mathbb{T}}$ be left-dense. We define

$$\liminf_{t\to t_0-}h(t)=\lim_{\varepsilon\to 0+}\inf_{t\in L_\varepsilon(t_0)}h(t),\quad \limsup_{t\to t_0-}h(t)=\lim_{\varepsilon\to 0+}\sup_{t\in L_\varepsilon(t_0)}h(t).$$

2 Let $t_1 \in \overline{\mathbb{T}}$ be right-dense. We define

$$\liminf_{t\to t_1+} h(t) = \lim_{\varepsilon\to 0+} \inf_{t\in R_\varepsilon(t_1)} h(t), \quad \limsup_{t\to t_1+} h(t) = \lim_{\varepsilon\to 0+} \sup_{t\in R_\varepsilon(t_1)} h(t).$$

Theorem (L'Hôpital's Rule)

Let f and g be differentiable on \mathbb{T} and

$$\lim_{t \to t_0-} f(t) = \lim_{t \to t_0-} g(t) = 0 \quad \text{for some left-dense} \quad t_0 \in \overline{\mathbb{T}}. \tag{4}$$

Suppose there exists $\varepsilon > 0$ such that

$$g(t) > 0, \quad g^{\Delta}(t) < 0 \quad \text{for all} \quad t \in L_{\varepsilon}(t_0).$$
 (5)

Then

$$\liminf_{t \to t_0-} \frac{f^{\Delta}(t)}{g^{\Delta}(t)} \leq \liminf_{t \to t_0-} \frac{f(t)}{g(t)} \leq \limsup_{t \to t_0-} \frac{f(t)}{g(t)} \leq \limsup_{t \to t_0-} \frac{f^{\Delta}(t)}{g^{\Delta}(t)}.$$

Let $\delta \in (0, \varepsilon]$. We set

$$\alpha = \inf_{\tau \in L_{\delta}(t_0)} \frac{f^{\Delta}(\tau)}{g^{\Delta}(\tau)}, \quad \beta = \sup_{\tau \in L_{\delta}(t_0)} \frac{f^{\Delta}(\tau)}{g^{\Delta}(\tau)}.$$

Then, using (5),

$$\alpha g^{\Delta}(\tau) \geq f^{\Delta}(\tau) \geq \beta g^{\Delta}(\tau) \quad \text{for any} \quad \tau \in L_{\delta}(t_0).$$

Hence,

$$\int_{s}^{t} \alpha g^{\Delta}(\tau) \Delta \tau \geq \int_{s}^{t} f^{\Delta}(\tau) \Delta \tau \geq \int_{s}^{t} \beta g^{\Delta}(\tau) \Delta \tau$$

for all $s, t \in L_{\delta}(t_0)$, s < t. Therefore,

$$\alpha(g(t) - g(s)) \ge f(t) - f(s) \ge \beta(g(t) - g(s))$$

for all $s, t \in L_{\delta}(t_0)$, s < t. From here,

$$-\alpha g(s) \geq -f(s) \geq -\beta g(s)$$
 for all $s \in L_{\delta}(t_0)$

as $t \to t_0-$, whereupon

$$lpha \leq rac{f(s)}{g(s)} \leq eta \quad ext{for all} \quad s \in L_\delta(t_0).$$

Letting $\delta \to 0+$, we get the desired result.

Let $\mathbb{T}=[-1,1)\cup\{1,2,4,\ldots\}$, where [-1,1) is the real-valued interval. We compute

$$I = \lim_{t \to 1-} \frac{t^3 - 2t^2 - t + 2}{t^3 - 7t + 6}.$$

Note that t=1 is left-dense and $f^{\Delta}(t)=f'(t)$ for all $t\in [-1,1)$. Then

$$I = \lim_{t \to 1-} \frac{t^2(t-2) - (t-2)}{t^3 - t - 6t + 6}$$
$$= \lim_{t \to 1-} \frac{(t^2 - 1)(t-2)}{t(t-1)(t+1) - 6(t-1)}$$

$$= \lim_{t \to 1^{-}} \frac{(t-1)(t+1)(t-2)}{(t-1)(t^2+t-6)}$$

$$= \lim_{t \to 1^{-}} \frac{(t+1)(t-2)}{t^2+t-6}$$

$$= \frac{-2}{-4}$$

$$= \frac{1}{2}.$$

Let $\mathbb{T} = [-3,0) \cup \mathbb{N}_0$, where [-3,0) is the real-valued interval. We find

$$I = \lim_{t \to 0-} \frac{t \cos t - \sin t}{t}.$$

Note that t=0 is left-dense and $f^{\Delta}(t)=f'(t)$ for $t\in[-3,0)$. Hence,

$$I = \lim_{t \to 0-} \frac{(t \cos t - \sin t)'}{t'}$$

$$= \lim_{t \to 0-} (\cos t - t \sin t - \cos t)$$

$$= \lim_{t \to 0-} (-t \sin t)$$

$$= 0.$$

Let $\mathbb{T}=[-3,1)\cup 2^{\mathbb{N}_0}$, where [-3,1) is the real-valued interval. We compute

$$I = \lim_{t \to 0} \frac{\tan t - \sin t}{t - \sin t}.$$

Here, t=0 is left-dense and $f^{\Delta}(t)=f'(t)$ for all $t\in [-3,1)$. Then

$$I = \lim_{t \to 0} \frac{(\tan t - \sin t)'}{(t - \sin t)'}$$

$$= \lim_{t \to 0} \frac{\frac{1}{\cos^2 t} - \cos t}{1 - \cos t}$$

$$= \lim_{t \to 0} \frac{1 - \cos^3 t}{\cos^2 t (1 - \cos t)}$$

$$= \lim_{t \to 0} \frac{(1 - \cos t)(1 + \cos t + \cos^2 t)}{\cos^2 t (1 - \cos t)}$$

$$= \lim_{t \to 0} \frac{1 + \cos t + \cos^2 t}{\cos^2 t}$$

$$= 3.$$

Theorem (L'Hôpital's Rule)

Let f and g be differentiable on $\mathbb T$ and

$$\lim_{t\to t_0-} g(t) = \infty \quad \text{for some left-dense point} \quad t_0 \in \overline{\mathbb{T}}. \tag{6}$$

Assume there exists $\varepsilon > 0$ such that

$$g(t) > 0, \quad g^{\Delta}(t) > 0 \quad \text{for all} \quad t \in L_{\varepsilon}(t_0).$$
 (7)

Then

$$\lim_{t\to t_0-}\frac{f^{\Delta}(t)}{g^{\Delta}(t)}=r\in\overline{\mathbb{R}}$$

implies

$$\lim_{t\to t_0-}\frac{f(t)}{g(t)}=r.$$

Let $r \in \mathbb{R}$ and c > 0. Then there exists $\delta \in (0, \varepsilon]$ such that

$$\left|rac{f^{\Delta}(au)}{g^{\Delta}(au)} - r
ight| \leq c \quad ext{for all} \quad au \in L_{\delta}(t_0).$$

Hence, using (7), we obtain

$$-cg^{\Delta}(\tau) \leq f^{\Delta}(\tau) - rg^{\Delta}(\tau) \leq cg^{\Delta}(\tau) \quad \text{for all} \quad \tau \in L_{\delta}(t_0).$$

From here,

$$-\int_{s}^{t}cg^{\Delta}(\tau)\Delta\tau\leq\int_{s}^{t}(f^{\Delta}(\tau)-rg^{\Delta}(\tau))\Delta\tau\leq\int_{s}^{t}cg^{\Delta}(\tau)\Delta\tau$$

for all $s, t \in L_{\delta}(t_0)$, s < t. Therefore,

$$-c(g(t)-g(s)) \leq f(t)-f(s)-r(g(t)-g(s)) \leq c(g(t)-g(s),$$

i.e.,

$$(r-c)(g(t)-g(s)) \le f(t)-f(s) \le (c+r)(g(t)-g(s))$$

for all $s, t \in L_{\delta}(t_0)$, s < t. Hence,

$$(r-c)\left(1-\frac{g(s)}{g(t)}\right) \leq \frac{f(t)}{g(t)} - \frac{f(s)}{g(t)} \leq (c+r)\left(1-\frac{g(s)}{g(t)}\right)$$

for all $s, t \in L_{\delta}(t_0)$, s < t. Letting $t \to t_0-$ and using (6), we find

$$r-c \leq \liminf_{t \to t_0-} \frac{f(t)}{g(t)} \leq \limsup_{t \to t_0-} \frac{f(t)}{g(t)} \leq c+r.$$

Now, we let $c \to 0+$, and then $\lim_{t \to t_0-} \frac{f(t)}{g(t)}$ exists and equals r.

Let $r = \infty$ and c > 0. Then there exists $\delta \in (0, \varepsilon]$ such that

$$rac{f^{\Delta}(au)}{g^{\Delta}(au)} \geq rac{1}{c} \quad ext{for all} \quad au \in L_{\delta}(t_0),$$

and hence

$$f^{\Delta}(au) \geq rac{1}{c} g^{\Delta}(au)$$
 for all $au \in L_{\delta}(t_0)$.

From here,

$$\int_s^t f^\Delta(au) \Delta au \geq \int_s^t rac{1}{c} g^\Delta(au) \Delta au \quad ext{for all} \quad s,t \in L_\delta(t_0), \quad s < t,$$

whereupon

$$f(t) - f(s) \geq rac{1}{c}(g(t) - g(s)) \quad ext{for all} \quad s, t \in L_\delta(t_0), \quad s < t.$$

Therefore.

$$rac{f(t)}{g(t)} - rac{f(s)}{g(t)} \geq rac{1}{c} \left(1 - rac{g(s)}{g(t)}
ight) \quad ext{for all} \quad s,t \in L_\delta(t_0), \quad s < t.$$

Then letting $t \to t_0$, we find

$$\lim_{t\to t_0-}\frac{f(t)}{g(t)}\geq \frac{1}{c}.$$

Now letting $c \rightarrow 0+$, we obtain

$$\lim_{t\to t_0-}\frac{f(t)}{g(t)}=\infty=r.$$

The case $r = -\infty$ is left for an exercise. This completes the proof.

Definition

Assume $f: \mathbb{T} \to \mathbb{R}$ is a regulated function. Any function $F: \mathbb{T} \to \mathbb{R}$ for which

$$F^{\Delta}(t) = f(t)$$
 holds for all $t \in \mathbb{T}^{\kappa}$

is called the $indefinite\ integral\ of\ a\ regulated\ function\ f\ and\ denoted\ by$

$$\int f(t)\Delta t = F(t) + c,$$

where c is an arbitrary constant. We define the Cauchy integral by

$$\int_{ au}^{s} f(t) \Delta t = F(s) - F(au)$$
 for all $au, s \in \mathbb{T}$.

Let $\mathbb{T} = \mathbb{Z}$. Then $\sigma(t) = t+1$, $t \in \mathbb{T}$. Assume $f(t) = 3t^2 + 5t + 2$, $t \in \mathbb{T}$. Since

$$(t^{3} + t^{2})^{\Delta} = (\sigma(t))^{2} + t\sigma(t) + t^{2} + \sigma(t) + t$$

$$= (t+1)^{2} + t(t+1) + t^{2} + t + 1 + t$$

$$= t^{2} + 2t + 1 + t^{2} + t + t^{2} + 2t + 1$$

$$= 3t^{2} + 5t + 2,$$

we have

$$\int (3t^2 + 5t + 2)\Delta t = t^3 + t^2 + c.$$

Let $\mathbb{T}=2^{\mathbb{N}}$ and define $f:\mathbb{T}\to\mathbb{R}$ by $f(t)=2\sin\frac{t}{2}\cos\frac{3t}{2}$, $t\in\mathbb{T}$. In this case, we have that $\sigma(t)=2t$. Since

$$(\sin t)^{\Delta} = \frac{\sin \sigma(t) - \sin t}{\sigma(t) - t}$$
$$= \frac{\sin(2t) - \sin t}{t}$$
$$= \frac{2}{t} \sin \frac{t}{2} \cos \frac{3t}{2},$$

we get

$$\int \frac{2}{t} \sin \frac{t}{2} \cos \frac{3t}{2} \Delta t = \sin t + c.$$

Let $\mathbb{T} = \mathbb{N}_0^2$ and define $f: \mathbb{T} \to \mathbb{R}$ by $f(t) = \frac{1}{1+2\sqrt{t}} \log \frac{(\sqrt{t}+1)^2}{t}$, $t \in \mathbb{T}$. Since $\sigma(t) = (\sqrt{t}+1)^2$ and

$$(\log t)^{\Delta} = \frac{\log \sigma(t) - \log t}{\sigma(t) - t}$$

$$= \frac{\log(\sqrt{t} + 1)^2 - \log t}{(\sqrt{t} + 1)^2 - t}$$

$$= \frac{1}{1 + 2\sqrt{t}} \log \frac{(\sqrt{t} + 1)^2}{t},$$

we get

$$\int \frac{1}{1+2\sqrt{t}} \log \frac{(1+\sqrt{t})^2}{t} \Delta t = \log t + c.$$

Theorem

Every rd-continuous function $f: \mathbb{T} \to \mathbb{R}$ has an antiderivative. In particular, if $t_0 \in \mathbb{T}$, then F defined by

$$F(t) = \int_{t_0}^t f(au) \Delta au \quad ext{for} \quad t \in \mathbb{T},$$

is an antiderivative of f.

Since f is rd-continuous, it is regulated. Let F be such that

$$F^{\Delta}(t) = f(t)$$
 for $t \in D$.

We have that F is pre-differentiable with D. Let $t \in \mathbb{T}^{\kappa} \setminus D$. Then t is right-dense. Since f is rd-continuous, f is continuous at t. Let $\varepsilon > 0$ be arbitrarily chosen. Then there exists a neighbourhood U of t such that

$$|f(s) - f(t)| \le \varepsilon$$
 for all $s \in U$.

We define

$$h(\tau) = F(\tau) - f(t)(\tau - t_0)$$
 for $\tau \in \mathbb{T}$.

Then h is pre-differentiable with D and

$$h^{\Delta}(au) = F^{\Delta}(au) - f(t)$$
 $= f(au) - f(t)$ for all $au \in D$.

Hence.

$$|h^{\Delta}(s)| = |f(s) - f(t)|$$

 $< \varepsilon \text{ for all } s \in D \cap U.$

Therefore,

$$\sup_{s\in D\cap U}|h^{\Delta}(s)|\leq \varepsilon,$$

whereupon

$$|F(t) - F(r) - f(t)(t - r)| = |h(t) + f(t)(t - t_0) - (h(r))|$$

$$+ f(t)(r - t_0) - f(t)(t - r)|$$

$$= |h(t) - h(r)|$$

$$\leq \left\{\sup_{s \in D \cap U} |h^{\Delta}(s)|\right\} |t - r|$$

$$\leq \varepsilon |t - r|,$$

which shows that f is differentiable at t and $F^{\Delta}(t) = f(t)$.

Let a < b be points in \mathbb{T} and [a, b) be the half-closed bounded interval in \mathbb{T} .

Definition

A partition of [a, b) is any finite ordered subset

$$P = \{t_0, t_1, t_2, \dots, t_n\} \subset [a, b],$$

where

$$a = t_0 < t_1 < \ldots < t_n = b.$$

The number n depends on the particular partition. The intervals

$$[t_{i-1},t_i), \quad i\in\{1,\ldots,n\}$$

are called *subintervals* of the partition P.

Let f be a real-valued bounded function on [a, b). We set

$$M = \sup\{f(t) : t \in [a, b)\}, \quad m = \inf\{f(t) : t \in [a, b)\}$$

and

$$M_i = \sup\{f(t): t \in [t_{i-1}, t_i)\}, \quad m_i = \inf\{f(t): t \in [t_{i-1}, t_i)\}, \quad i \in \{1, \dots, t_i\}$$

Definition

The upper Darboux Δ -sum U(f, P) and the lower Darboux Δ -sum L(f, P) of f with respect to P are defined by

$$U(f,P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}), \quad L(f,P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}),$$

respectively.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

Theorem

We have

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a). \tag{8}$$

Proof.

We have

$$m_i \ge m$$
 and $M_i \le M$ for all $i \in \{1, ..., n\}$.

Then

$$L(f, P) = \sum_{i=1}^{n} m_i(t_i - t_{i-1})$$

$$\geq m \sum_{i=1}^{n} (t_i - t_{i-1})$$

$$= m(b - a),$$

$$U(f, P) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$$

$$\leq M \sum_{i=1}^{n} (t_i - t_{i-1}) = M(b - a),$$

which completes the proof.

