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Definition
A function f : T — R is called completely delta differentiable at a point
t% € T* if there exist constants A; and A, such that
F(t%) — F(t) = AL(t® — t) + a(t® —t) forall te Us(t®) (1)

and

f(o(t%) — f(t) = Ax(a(t%) — t) + B(a(t°) —t) forall te Us(t%), (2)
where Us(t°) is a 6-neighbourhood of t° and

a=ao(t’t) and B=73(t%1)

are equal to zero for t = t° such that

lim a(t% t) = lim B(t% t) = 0.
t—t0 t—t0
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Let a function f : T — R be continuous and have the first-order delta
derivative f2 in some §-neighbourhood Us(t°) of the point t° € T*. If fA
is continuous at the point t°, then f is completely delta differentiable at t°.
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Using the definition of delta derivative, we have that

F(a(t%) = £(t) = FA(0)(a(t%) — t) + B(a(t%) - 1), (3)

where 3 = 3(t° t) and B — 0 as t — t%, i.e., (2) holds. Now, we will
prove (1).

Let t° € T be isolated. Then (1) is satisfied independently of A; and «
because in this case, Us(t°) consists of the single point t° for sufficiently
small 6 > 0. O
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Let t° be right-dense. In this case, o(t°) = t° and (3) coincides with (1).
Let t° be left-dense and right-scattered. Then for sufficiently small § > 0,
any point t € Us(t%) \ {t°} must satisfy t < t9. By the mean value
theorem, we obtain

FAE)(E° — 1) < F(£%) — () < FR(&)(1° — 1),

where £1,& € [t,t9). Since &1,& — t% as t — t% and f2 is continuous at
t9 we have

() (1) a0
I = f=(t
t|—>n;° t0 — ¢t ( )
Therefore, o
F(t°) —f(t) _ ;a0
o =)+,

where o = (0, t) and o — 0 as t — t°. Consequently, (1) holds for
Al = fA(tO). L]
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Definition

Let T=TU {supT} U {inf T}. If oo € T, then oo is called left-dense. If
—00 € T, then —co is called right-dense.
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For any left-dense point ty € T and for any € > 0, we set
L(to)={teT: 0<ty—t<e}.

If to € T is left-dense, then L.(to) is nonempty. If co € T, then
1
LE(oo):{tET: t>é_}.

For a right-dense point t; € T, we define
R(ti)={teT: 0<t—t; <e}.

For every right-dense point t; € T, the set R-(t1) is nonempty. If
—oo € T, then

RE(—oo):{tG']I’: t<—1}.

€
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Let h: T — R.
@ Let ty € T be left-dense. We define

liminf h(t lim inf Ah(t limsup h(t) = lim sup h(t
t—to— ( ) e—0+ teLs(tO) ( ) t*}tofp ( ) e—0+ tGLg?to) ( )

@ Let t; € T be right-dense. We define

im inf A(t) = lim, , inf. A8 limeuph(t) = lim sup ().
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Theorem (L'Hépital’s Rule)

Let f and g be differentiable on T and

lim f(t)= lim g(t)=0 for some left-dense ty € T. (4)

t—tp— t—to—
Suppose there exists € > 0 such that

g(t)>0, g2(t)<0 forall te L(t). (5)
Then

iminf ) < iminf £ < limsup £

S lims fA(t)
u | u .
Mt 25 = I o) S M o) = M oAy

Svetlin G. Georgiev Time Scales Analysis Lecture 11 October 15, 2025



Let § € (0,e]. We set

fA(T) B— sup fA(T)

a= in , :
rels() 82(7) reLs(to) g2(7)

Then, using (5),

ag®(r) = fA(7) = Bg”(r) forany 7 € Ls(to).
Hence, , . .
/ ong(T)ATZ/ fA(T)ATZ/ BgA(T)AT

for all s,t € Ls(tp), s < t. Therefore, []
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R
o(g(t) ~ &(s)) = (1) — F(s) = Ble(t) ~ &(5))

for all s, t € Ls(tp), s < t. From here,
—ag(s) > —f(s) > —pg(s) forall se Ls(to)

as t — top—, whereupon

f
a< fls) < B forall se Ls(ty).
g(s)
Letting § — 0+, we get the desired result. [
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Let T =[-1,1)U{1,2,4,...}, where [-1,1) is the real-valued interval.
We compute
-2t 42
= lim
to1— 3 —-Tt+6

Note that t = 1 is left-dense and f2(t) = f(t) for all t € [~1,1). Then

t2(t—2) - (t—2)
t—>l1— t3—t—6t+6

; (t> —1)(t —2)
el t(t—1)(t + 1) — 6(t — 1)
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(t—1)(t+1)(t—2)

= i
- (t=1)(t>+t—06)
_ i (££D-2)
t>l— te+t—06
2
4
1
= 3
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Let T = [-3,0) UNp, where [—3,0) is the real-valued interval. We find

tcost —sint
/= lm —mMM—
t—0— t

Note that t = 0 is left-dense and f2(t) = f/(t) for t € [-3,0). Hence,

: tcost —sint)
| = i (£COSt—sint)
t—0— t/

= lim (cost — tsint — cos t)
t—0—

= i —tsint
g (~tsin)
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Let T = [-3,1) U 2o, where [~3,1) is the real-valued interval. We
compute

Here, t = 0 is left-dense and f2(t) = f/(t) for all t € [-3,1). Then

|~ i (tant —'sin t)
t—>0 (t—sint)’
—L— —cost

= lim
t—-0 1 —cost

: 1—cosdt
lim —
t—0 cos? t(1 — cos t)
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(1 — cos t)(1 + cos t + cos? t)

lim

t—0

lim
t—0

cos? t(1 — cost)

1+ cost + cos? t

cos? t
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Theorem (L'Hépital’'s Rule)

Let f and g be differentiable on T and

Jim g(t) = oo for some left-dense point ty € T. (6)
A

Assume there exists € > 0 such that

g(t)>0, g®(t)>0 forall te l(t). (7)
Then A
f _
im (t) =reR
tto— g4(t)
implies
lim —f(t) =r
t—to— g(t)
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Let r € R and ¢ > 0. Then there exists § € (0, ¢] such that

F2(7)
g2 (1)

Hence, using (7), we obtain

- r‘ <c forall 7€ Ls(to).

—ch(T) < fA(T) — rgA(T) < ch(T) for all 7 € Ls(to).

From here,

t t t
_ / & (r)Ar < / (FA(r) — rgB(r))Ar < / g™ (r)Ar
S S S
for all s,t € Ls(tp), s < t. Therefore,

—c(g(t) —g(s)) < f(t) = f(s) — r(a(t) — &(s)) < c(g(t) — &(s);

ie., H :

= = = =
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R
(r = €)(e(t) — &(s)) < F(1) = £(5) < (c + r)(&(t) — (5))

for all s,t € Ls(tp), s < t. Hence,

(r—c) <1— g(s)) < ;(g - ;(5) <(c+1) (1_ g(s)>

g(t) ( (t) g(t)
for all s, t € Ls(tp), s < t. Letting t — to— and using (6), we find
f f
r—c< Iimimcﬂ < Iimsupﬂ <c+r.
t=t— g(t) = ton- (1)
Now, we let ¢ — 0+, and then lim;__ % exists and equals r. ]
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Let r = 0o and ¢ > 0. Then there exists § € (0,¢] such that

fA(T) 1
25(7) > . for all 7 € Ls(to),
and hence 1
fA(r) > EgA(T) for all 7 € Ls(tp).
From here,

t t
1
/ FA(r)ar > / & (AT forall s,tels(t), s<t,
s S
whereupon

f(t)—f(s) > %(g(t) —g(s)) forall s,telLs(tg), s<t.

Therefore, ]
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f(t 1
(t) Q = (1 g(s)) forall s, te Ls(tp), s<t.
g(t) g(t) ¢ g(t)
Then letting t — top—, we find
f
lim (t) > 1
- g(t) =
Now letting ¢ — 0+, we obtain
lim f(t) =00 =
t=to— g(t)
The case r = —oo is left for an exercise. This completes the proof. Ol
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Definition
Assume f : T — R is a regulated function. Any function F : T — R for

which
FA(t) = f(t) holds for all te T"

is called the indefinite integral of a regulated function f and denoted by
/f(t)At = F(t) +c,
where c is an arbitrary constant. We define the Cauchy integral by

/s f(t)At _ F(S) _ F(T) forall 7,s€T.
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Let T =7Z. Theno(t)=t+1, t € T. Assume f(t) =3t>+5t+2, t €T,
Since

(B +t2)2 = (o(t)* +to(t) +t2+o(t) + ¢
= (t4+124+t(t+1)+2+t+1+1¢
= 242 4+1+24+t+t2+2t+1

= 3t>4+5t+2,

we have

/(3t2+5t+2)At:t3+t2+c.
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Let T = 2N and define f : T — R by f(t) = 2sin £ cos 3£, t € T. In this
case, we have that o(t) = 2t. Since

sino(t) —sint

LA
t =
(sint) ()=t

_sin(2t) —sint

B t
2sn { cos 3t

= — SI —_ _—
t 2 27

we get

2 2

2 t 3t
/tsincosAt:sint+c.
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Let T = N2 and define f : T — R by f(t) = —2— log

(Vi) o,

Since o(t) = (vt + 1)? and i
(ogt)y® — PEZI B!
log(v/t +1)? — log t
(Vt+1)2 -t
1 (Vt+1)?

t

lo
1122 8 ¢

we get

/ 1, Ve

O,
1+2ve ° ¢t

At =logt+ c.

9
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Every rd-continuous function f : T — R has an antiderivative. In
particular, if ty € T, then F defined by

t
F(t) = / f(r)Ar for teT,
[

0

is an antiderivative of f.
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Since f is rd-continuous, it is regulated. Let F be such that
FA(t) = f(t) for teD.

We have that F is pre-differentiable with D. Let t € T®\ D. Then t is
right-dense. Since f is rd-continuous, f is continuous at t. Let € > 0 be
arbitrarily chosen. Then there exists a neighbourhood U of t such that

|f(s) —f(t)] <e forall seU.

We define
h(t) = F(r) — f(t)(r — to) for 7€T.

Then h is pre-differentiable with D and [
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ho(r) = FAr)—f(t)

= f(r)—f(t) forall 7eD.
Hence,

A2 = [f(s) = f(t)

< ¢ forall seDnNU.

Therefore, ]
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sup |h%(s)| <e,
seDNU
whereupon
[F(t) = F(r) = f(e)(t = )| = [h(t) + F(£)(t — to) — (h(r)
+1(t)(r — ) — F()(t = r)|
— [h(t) — h(r)
- —r
< {am, e}
< E‘t - r|7
which shows that f is differentiable at t and F2(t) = f(t). O

— — = = SRe
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Let a < b be points in T and [a, b) be the half-closed bounded interval in

Definition
A partition of [a, b) is any finite ordered subset

|H

P = {ty, t1,t2,...,ta} C [a, b],

where
a=t<thh<...<t,=b.

The number n depends on the particular partition. The intervals

[t,',l,t,'), S {15--'7'7}

are called subintervals of the partition P.
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Let f be a real-valued bounded function on [a, b). We set
M =sup{f(t):t €a,b)}, m=inf{f(t):tc[ab)}
and

M; = sup{f(t) 1t e [t,'_l, t,')}, m; = inf{f(t) 1t e [t,'_l, t,')}, i € {1, e

Definition

The upper Darboux A-sum U(f, P) and the lower Darboux A-sum L(f, P)
of f with respect to P are defined by

U(f, P) = ZM i —ti_1), L(F,P)= Zm,(t, ti—1),

respectively.
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We have
m(b—a) < L(F, P) < U(f, P) < M(b—2). (8)
We have
mi>m and M; <M forall ie{l,...,n}.
Then ]

A\,
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L(f,P) = im,’(t;—t{_l)
i=1

v
3
ing
=
|
L
i

i=1
= m(b _ 3),
U(f, P) = zn:M,'(t,'—t,',l)
i=1
< Mi(t,' = t,'_1) = M(b = a),
i=1

which completes the proof.
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