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Definition

An improper integral of the first kind is said to be absolutely convergent
provided the integral

| Iria: @

of the modulus of the function f is convergent. If an improper integral of
the first kind is convergent but not absolutely convergent, then it is called
conditionally convergent.
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If the integral

/ F(t)At (2)

is absolutely convergent, then it is convergent.

Let (2) be absolutely convergent. Then the integral (1) is convergent.
Suppose that € > 0 is arbitrarily chosen. Hence, employing the Cauchy
criterion, it follows that there exists A > a such that for any A;, A> > A,

we have
Az
| Irwiac
A

From here, for any A1, A> > A, we have

<e.

A A
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An integral (2) with f(t) > 0 for all t > a is convergent if and only if
there exists a constant M > 0 such that

A
/ f(t)At <M whenever A> a.
a
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Q Let F(A) = faA f(t)At < M whenever A > a. Then

/ F(t)At = lim F(A) < M.

5 A—o0
Therefore, the integral (2) is convergent.

@ Let the integral (2) be convergent. Assume that the function F(A),
A > a, is unbounded. Then

/ f(t At—llm F(A) = oo,

which is a contradiction.
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Let the inequalities 0 < f(t) < g(t) be satisfied for all t € [a,00). Then
the convergence of the improper integral

/ " g(0At 3)

implies the convergence of the improper integral (2), while the divergence
of the improper integral (2) implies the divergence of the improper integral

(3).
Proof. ...

Since 0 < f(t) < g(t) for any t € [a,00), we get

A A
0< / f(t)At < / g(t)At forany A€ [a, ),
a a

which completes the proof. [
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Let T = Z. Consider the integral

[e.e]
1
/:/ |og%( ® 1 7t3 +100)At.
1

Here, o(t) =t + 1 and

t4+1 t+1
Iog%(t6+7t3+100)2|0g j; for any t € [1,00)
and o 1
t
IZ/ log i At.
1 t
Note that
log o(t) — log t
(logt)d — Iogo(t)—logt

o(t)—t

= log(t+1)—logt
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Therefore,
0o t 1 . A
/ log LAt = lim / (log t)2At
1 t A—o0 1
lim log |
= t
Ao 8t lem
= 00.
Hence, the improper integral / is divergent.
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Let T = 2No. Consider the integral

o 1
| = At
/1 t3(t2 +5)(t2+ 7t +1)

Here, o(t) = 2t and

L < 1 f t€[l,00)
Y or an ).
t3(t2+5)(t2+7t+1) — &3 Y ’

Also,
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whereupon

Hence,

4.1 ‘A
3 Asoo t2 |t=1

4

3

Therefore, the integral / is convergent.
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Let T = 3Yo. Consider the integral

At.

I_/OO sindt + e (t,1) +cos’t+ 5
1 t

Here, o(t) = 3t and

sindt + e (t,1) +cos®t +5
t

forany t € [1,00),
whereupon

1

Also,
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Example

log(o(t)) — log t

logt)® =
(log t) () —t
~ log(3t) —logt
N 2t
_ log3
2t
from where
=" _(logt)A.
log 3
Hence,
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*1
/ SAt = / (log t)2 At
1t Iog3 A—>oo
2 . t=A
= — t
|Og3 I—>moo 8 t=1
= oo0.
Therefore, the considered integral is divergent.
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Let |f(t)] < g( ) for all t € T with t > a. Then the convergence of the
integral [° g(t)At implies the convergence of the integral [ ° f(t)At.
Since f g(t)At is convergent, using Theorem 4, we have that the

integral [° \f t)|At is convergent. Therefore, the integral [° f(t)At is

absolutely convergent. From here and from Theorem 2, it follows that the
integral f f(t)At is convergent. Ol

v
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Theorem (Comparison Criterion)

Let f f(t)At and f g(t)At be improper integrals of the first kind with
positive integrands. Suppose that the limit

f(t)
= 2(t) =

(4)

exists (finite) and is not zero. Then the integrals are simultaneously
convergent or divergent.
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Let € € (0, L) be arbitrarily chosen. From (4), it follows that there exists
Ao > a such that

f‘
L—5§(3§L+6 for any t > Ao,

g(

from where
(L—e)g(t) < f(t) < (L+¢e)g(t) forany t> Ao.

Hence,

o0

(L—s)/oog(t)Atg/Oo f(t)At < (L+s)/ g(t)At. (5)

Ao Ao Ao
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Let f g(t)At be convergent. Then fA t)At is convergent. Hence,
o0
(L+e) [ gt
Ao

is convergent From here and from Theorem 4, using (5), we obtain that
Ja, f(t)At is convergent. Therefore, [ f( )At is convergent.

Let f f(t)At be convergent. Then fA t)At is convergent From here
and from Theorem 4, using (5), we obtain that fA t)At is convergent.
Therefore, f g(t)At is convergent. [
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Let [ f(t)At be dlvergent Hence, fA t)At is divergent. Thus, using
(5), it follows that fA t)At is d|vergent Therefore [ g(t)At is

divergent.
Let [ g(t)At be dlvergent Hence, fA t)At is divergent. Thus, using

(5), it follows that [~ f(t)At is divergent. Therefore [2f(t)At is
divergent. [

v
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Let T = Z. Consider the integral
oo t4
I:/ At
1 (2411t +30)(t*+ 3+ 2+ 1)
Define
t4 1
O =i eresy 89~ arrr0
and - ,
= - At.
/1 t2+ 11t + 30
We have
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#
lim —f(t) = lim (£2+11¢+30)(t*+£3+t2+1)
B 1
t—oo g(t) t—00 -

t4
lim
t—oo t4 + 3 2 4+ 1

Thus, using Theorem 13, it follows that the integrals / and J are
simultaneously convergent or divergent. Note that
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—

(t+5)(t +6)

1
2111t +30°
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Therefore,

1
m
Asoco t+ 5

1

6

t=1

Consequently, the integral / is convergent.
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Example

Let T = 2%o. Consider the integral
/:/ (t? + 2t + 3)At.
1

Let

f(t)=t>+2t+3, g(t) =1t J:/ g(t)At.
1

We have that

f(t t24ED 3

Iim —< = I|lim >
t—>oog(t t—00 t

~— | ~—
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Thus, employing Theorem 13, it follows that the integrals / and J are
simultaneously convergent or divergent. Since

A
J = Iim/ t2At
A—00 1

1 A
= = lim / ()2At
1

7 A—oco

1 . t=A
= Z lim ¢3

7 A—oo t=1
= OO,

we conclude that / is divergent.
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Let T = 2%o. Consider the integral

t2
We set o o
f(t) = ———(t+1), g(t)=—F
and
Jo [T A
; t
Then
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. (1) € ;fi (t+1)
Mog(t) e een
o) ~ e et

. t+1
= |lim ——
t—o00 t

= 1.

Using Theorem 13, we conclude that the integrals / and J are
simultaneously convergent or divergent. Note that

e—o(t) _ ot

(9% = o(t)—t

Hence,
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A
J = — lim / (e HAAt
A—o00 1
. t=A
= — lim et
A—o0 t=1
1
= <
Consequently, the integral / is convergent.
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Let f be integrable from a to any point A € T, A > a. Suppose that the
integral

F(A) = / e

is bounded for any A > a. Suppose that g is monotone on [a, o0) and
lim:— 00 g(t) = 0. Then the improper integral of the first kind of the form

[ rweta (6)

is convergent.
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Let A;,A> € T, A» > A1 > a. By the mean value theorem, Theorem 77, it
follows that there exists A between infac(a; a,] F(A) and supacia, a,) F(A)

such that
Az

Az
[ roeoac = e(a) - s(e)h+a(a) [ roae @)
A1 Al

Let M > 0 be a constant such that

[F(A)l <M on [a,00).

November 11, 2025
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From (7), we get

Az
/A f(t)g(t)At = (g(A1) — g(A2))A + g(A2)(F(A2) — F(A1))

and

Az
/ F(D)g(t)At

A1

= [(g(A1) — g(A2))A\ + g(A2)(F(A2) — F(A1))|

< g(A)IIAl + g (A)IIA] + g (A2)I(IF (A2)| + [F(A1)])
< Mlg(A1)| + 3M|g(A2)|

= M(|g(A1)| + 3lg(A2)])-
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Let € > 0 be arbitrarily chosen. Since g(t) — 0 as t — oo, there exists
A3z > a such that

€

8(A) < o

for any A > As.

Hence, using (8), for A1, Ay > As, we get

/A?Z f(t)g(t)At‘ <M (47\/, . m)

= ¢&.

From here and from Cauchy's criterion, Theorem ?7?, it follows that the
integral (6) is convergent. O
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Let T = 7Z. Consider the integral

I_/Oo tsint At
o J1 (2+3t+2)(82+1)

et sint t
0=arsiry 8= w51

We have
@) - (R
&0 = I NEOrY

t> 4+ 1—t(o(t) +t)
(2 +1)((t+1)2+1)

2 +1—t(2t +1)
(t2 +1)(t? + 2t + 2)
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bl — 2 —
(2 +1)(t?+2t+2)

1—t—¢2
(2 +1)(t2+2t+2)

Therefore, the function g is monotone on [1,00). Moreover,

lim g(t) = lim

t—o00 t—oo t2 +1 -

/100 f(t)At

and

< /1 HOIN

[ | sin t|
= /1 G Dc+2)°t

= = = SRS
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o0 1
= /1 TP

00 1 A
- - &)

1 \t+1

1

Ct+1
1

>

t=o00

t=1

Thus, using Theorem 23, it follows that the integral I is convergent.
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Let T = 2No. Consider the integral
00 12
sin“t 4+ cost+ 3
| = At.
/1 t2(t2 + 1)
Let )
sin“t+ cost + 3 1
f(t) = ) =
(1) T g0 =
Then
(1>A _ (P4
t2+1 (2 +1)((a(1))2+ 1)
B o(t)+t
(t2+1)(4t2+ 1)
L 3t
(24 1)(4t2+1)
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Therefore, the function g is monotone on [1,00). Moreover,

0

tll[rgog(t) - t|l>no]o 211

/loo f(t)At

and

< /1 |f(t)|At

> |sin? t + cos t + 3|
_ [,

At

t2

/Oosin2t+|cost|+3
1
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§5/ %At
1t
oolA
- ()
1 t

Therefore, using Theorem 23, it follows that the integral / is convergent.

i
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Let T = 3No. Consider the integral

> 1
| = At.
/1 t(t10 4+ ¢11 + 12 4+ 1)

We set
f(t) = ! (6) =
_t10+t11+t12+1’ g _t
Then A
A t 1
t) = — =——.
g~ (t) to(t) 3t?

Therefore, the function g is a monotonic function on [1,00). Also,

1
lim g(t)= lim — =0

t—00 t—oo t

and
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/100 F(t)At

< /1 HOIN

< /OO - At
— 1 t10+t11+t12+1
(0.0)
1
[ La
1 t
o /1 A
= —3/ <> At
1 t

IN

Hence, using Theorem 23, it follows that the integral / is convergent.
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Let T be a time scale of the form

T={txi: keNg} with 0<ty<t;<... and klim t, = 00.
— 00

Suppose that f : [tp,00) — R is nonincreasing with ftzo f(t)At < occ.

Assume that g : T — R satisfies
g(tx) < Kf(tks1) forall k € Ny,

where K > 0 is a constant. We will prove that [,° g(t)At < oc.
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We have
| emae = 3 elantan)
fo k=0
< K Ftrgn)inlte)
k=0
< K f(tu(t)
k=0
= K/OO f(t)At
< oo
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Example

Let T = 2No. We will prove that the integral

(0.0
1
/ LAt
1 tP
is divergent for p € [0,1] and convergent for p > 1.

Let t, = 2%, k € Ng. Then

terr = 2P p(te) = tegr — te = 2K — 2K

and
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=1
Z t—pu(tk)
k=0 k
N
> 5@ =2
k=0

o0 1 oo
2 Z ok(p—-1) Z
%) 1 =00
Z 2k(p—1)
k=0 < 0

1
2k(p—1)

if pel0,1]

if p>1.
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Let T be a time scale that satisfies (9). If f : [ty,00) — R is
nonincreasing, then

/too f(t)Vt < /too f(t)dt < /too f(t)At,

where the first and last integrals are taken over T, while the middle
integral is taken over the interval [ty, c0) of R.

Since T is a time scale that satisfies (9), we have

[e.9]

/oof(t)Vt:if(tkﬂ)(tkﬂ—tk) - / A=Y F(t) (et

to k=0 fo k=0
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Because the function f is nonincreasing on [tg, 00), we get

At — 8 < [ A < A8 ers — 80

ty

for all k € Np. Hence,

PRI CIEIATE) Y RTINS S AT
k=0 k=0 tk

k=0

which completes the proof. O
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Let T be a time scale that satisfies (9) and assume that f : [ty,00) — Ry
is nonincreasing.

o Ifftzo f(t)dt = oo, then ftzo f(t)At = co.
@ If [7 f(t)dt < oo, then [° f(t)Vit < oo.
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Let T be a time scale that satisfies (9). Then

/ lAt:oo if 0<p<1l. (10)
o tP

0
Let f(t) = tip Then f is nonincreasing on [tp, o) and

oo
1

/ —dt = co.
to tp

Thus, employing Corollary 37, we get (10). O
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Let T be a time scale satisfying (9). Then

<Vt
/ v—<oo if p>1. (11)
to i

v

Let f(t) = tip Then f is nonincreasing on [tg, c0). Since

* 1
/ —dt < oo for p>1,
1 (i

0

using Corollary 6, we get (11). Ol
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Let T be a time scale satisfying (9). Then

. Firstly, we prove that
* Vt
/ Vi_ (13)
t

We have 0
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vt _ tk+1—tk
E-rEE

tht1

Assume that

(e.e]
teyr — t
ZM<°O'

o k+1
Then ; ;
lim —tL "k _,
k—oco  tr4q
whereupon
. t
lim <L — 1.
k—oo Ty

Since ty < txy1 for any k € Ny, there exists N € N such that

et

<2 forany k> N.
tk
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We note that by Theorem 38, we have

o0

t — T
Zk—H koo
tk

k=0

On the other hand, we have

(%) N-1 (%)

Z tey1 — T Z tey1 — Bk n Z tey1 — Tk
tx tx tx

k=0 k=0 k=N
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ti 1—tk L1 — i tht1
= Z e +Z R
ti

= tk+1
N—1 ; ;
k+1 — k+1 —
< Y2 Z -
k—0 k+1
< oo,
which is a contradiction. Therefore
o
thr1 — tk
yohnzk o,
k—0 k+1
from where (13) follows. O
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Let p € [0,1). Since limyg_, oo tx = 00, there exists t; € T so that ¢; > 1.

Hence,
1 b © 1
/ Vt:/ Vt+/ —Vt. (14)
to (it to {it? t; (it?

Because t; > 1 and p € [0,1), we have

*1 1 1
/ -Vt=0o0 and / —Vit > / -Vt.
t; t t; g t; t

Thus, using (14), we get the desired result (12). This completes the
proof. O
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In the following situation, the ordinary Riemann integral of f on [a, b]
cannot exist since a Riemann integrable function from a to b must be
bounded on [a, b).

Definition

Let T be a time scale, a, b € T with a < b. Suppose that b is left-dense.
Assume that the function f is defined in the interval [a, b). Suppose that
f is integrable on any interval [a, c] with ¢ < b and is unbounded on

[a, b). The formal expression

b
/ f(t)At (15)

is called the improper integral of the second kind.
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Definition

We say that the integral (15) is improper at t = b. We also say that f has
a singularity at t = b. If the left-sided limit

lim /C f(t)At (16)

c—b—

exists as a finite number, then the improper integral (15) is said to exist or
be convergent. In such a case, we call this limit the value of the improper
integral (15) and write

/ab f(t)At = Cingﬁ /: f(t)At.

If the limit (16) does not exist, then the integral (15) is said to be not
existent or divergent.

Khaled Zennir Time Scales Analysis Lecture 18 November 11, 2025 55 /60



Let T = [0,1] U 2N, where [0, 1] is the real-valued interval. Define

V1—1t? for te[0,1]

i for te 2N,

ol
/:/Of(t)m.

ol g 1
l:/of(t)At—l—/zf(t)At

1 8
1 1
= /dt+/ At
o V1—1t2 2 t
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We have




i / L sl (1) 41 (1)
= lim —_— — —
0 V1—1t2 A el

c—1— t=4
: . |t=e 2 4
= CI_|>n11_ arcsin t t:0+1_6 + 256
_ T, 9
2 64

Therefore, the considered integral is convergent.
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Let T = {—4, -2} U [0, 1], where [0, 1] is the real-valued interval. Consider

the integral
LAt

RV

| =

We have

/\ﬁ dt

(t) + i / de
= —_— m
1—t'u t=—4 c—1- Jo 1—¢
2 . =G
= A vt
2
= — 42

V5

Therefore, the considered integral is convergent.
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Let T = {—1,0} U [1,2], where [1,2] is the real-valued interval. Consider

the integral
2 1.'3
| = / ——At.
—1 V4 — t2
We have
| = /0 iy At+/2 -
- Java—e 1 V4—1t2

t3p(t) - <
= B2 2d\/4 — 12
Va4 — t2lt=—1 CJQ/l
1 t=
= ——— — lim t®V4— 3 +2 I|m t\/4—t2dt
\/§ c—2— t= c—2—
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- _%wg_ im / VA 2d(4 - )

Therefore, the considered integral is convergent.
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