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Remark

All theorems for improper integrals of the first kind have exact analogues
for improper integrals of the second kind.
1. For the existence of the improper integral of the second kind, it is
necessary and sufficient that for any given ε > 0, there exists b0 < b such
that ∣∣∣∣∫ c2

c1

f (t)∆t

∣∣∣∣ < ε

for any c1, c2 ∈ T satisfying the inequalities b0 < c1 < b and b0 < c2 < b.
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Remark

2. Suppose that f (t) ≥ 0. Then, for any c ∈ [a, b],

F (c) =

∫ c

a
f (t)∆t

does not decrease as c increases, and the improper integral of the second
kind is convergent if and only if f is bounded, in which case the value of
the integral is limc→b− F (c).
3. Let the limit

lim
t→b−

f (t)

g(t)
= L

exist (finite) and suppose it is not zero. Then the integrals
∫ b
a f (t)∆t and∫ b

a g(t)∆t are simultaneously convergent or divergent.
Similar definitions are made and entirely similar results are obtained for
integrals of the second kind that are improper at the lower limit of
integration.
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Example

Let T be an arbitrary time scale, a, b ∈ T with a < b, and suppose that b
is left-dense. Let p ≥ 1. We prove that the integral∫ b

a

∆t

(b − t)p
(1)

is divergent.
1. Let p = 1. Let us choose points tn ∈ T for n ∈ N0 such that

a = t0 < t1 < . . . < b and lim
n→∞

tn = b. (2)
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Example

We set

τn =
1

b − tn
for any n ∈ N0. (3)

Then limn→∞ τn = ∞, tn = b − 1
τn
, and

tn+1 − tn =
1

τn
− 1

τn+1

=
τn+1 − τn
τnτn+1

for all n ∈ N0.

Hence,
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Example

∫ b

a

∆t

b − t
=

∞∑
n=0

∫ tn+1

tn

∆t

b − t

≥
∞∑
n=0

1

b − tn

∫ tn+1

tn

∆t

=
∞∑
n=0

tn+1 − tn
b − tn

=
∞∑
n=0

τn
τn+1 − τn
τnτn+1

=
∞∑
n=0

τn+1 − τn
τn+1

= ∞.
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Example

2. Let p > 1. There exists d ∈ [a, b) such that

0 < b − t < 1 for t ∈ [d , b).

Then
(b − t)p < b − t for t ∈ [d , b).

Hence, ∫ b

a

∆t

(b − t)p
=

∫ d

a

∆t

(b − t)p
+

∫ b

d

∆t

(b − t)p

>

∫ d

a

∆t

(b − t)p
+

∫ b

d

∆t

b − t

= ∞.
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Example

Let T be a time scale as before. Let p < 1 and suppose that for some

α ∈
[
1, 1p

)
,

1

b − tk+1
= O

(
1

(b − tk)α

)
as k → ∞.

We prove that the improper integral is convergent. Let τn be as before.
Then

τk+1 = O(ταk ) as k → ∞.

Hence, τk+1 ≤ Kταk for all k ∈ N0, where K > 0 is a constant. Then
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Example

∫ b

a

∆t

(b − t)p
=

∞∑
k=0

∫ tk+1

tk

∆t

(b − t)p

≤
∞∑
k=0

1

(b − tk+1)p

∫ tk+1

tk

∆t

=
∞∑
k=0

tk+1 − tk
(b − tk+1)p

=
∞∑
k=0

τk+1 − τk

τkτ
1−p
k+1
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Example

≤ K
1
α

∞∑
k=0

τk+1 − τk

τ
1
α
+1−p

k+1

≤ K
1
α

∞∑
k=0

∫ τk+1

τk

dt

t
1
α
+1−p

= K
1
α

∫ ∞

τ0

dt

t
1
α
+1−p

< ∞.
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Example

Let T be a time scale as before. We consider the integral

I =

∫ b

a

∆t

(t4 + t2 + 1)(b − t)
1
2

.

We have

I ≤
∫ b

a

∆t

(b − t)
1
2

< ∞.
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Example

Let T be a time scale as before. Assume a = 0, b = 2, 12 , 1 ∈ T. We
consider the integral

I =

∫ 2

0

tα−1

|1− t|
∆t.

We have

I =

∫ 1
2

0

tα−1

1− t
∆t +

∫ 1

1
2

tα−1

1− t
∆t +

∫ 2

1

tα−1

t − 1
∆t.

Since
∫ 1

1
2

tα−1

1−t ∆t is divergent for all α ∈ R, we conclude that the integral I

is divergent.
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Example

Let T be a time scale as before. Assume a = 0, b = 1, 12 ∈ T. Consider the
integral

I =

∫ 1

0
tα−1(1− t)β−1∆t.

We have

I =

∫ 1
2

0
tα−1(1− t)β−1∆t +

∫ 1

1
2

tα−1(1− t)β−1∆t

= I1 + I2.
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Example

Note that I1 is convergent for α > 0 and divergent for α ≤ 0. Also, I2 is
convergent for β > 0 and divergent for β ≤ 0. Therefore, I is convergent
for α > 0 and β > 0, and I is divergent for α ≤ 0 or β ≤ 0.
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Let n ∈ N be fixed. For each i ∈ {1, 2, . . . , n}, we denote by Ti a time
scale.

Definition

The set

Λn = T1 × T2 × · · · × Tn = {t = (t1, t2, . . . , tn) : ti ∈ Ti , i = 1, 2, . . . , n}

is called an n-dimensional time scale.

Example

(R,Z,N) is a 3-dimensional time scale.
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Example

(Z,N2
0, 2

N,N) is a 4-dimensional time scale.

Example

(3N, 4N,Q) is not a 3-dimensional time scale because Q is not a time scale.
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Remark

We equip Λn with the metric

d(t, s) =

(
n∑

i=1

|ti − si |2
) 1

2

for t, s ∈ Λn.

The set Λn with this metric is a complete metric space. Therefore, we
have for Λn the fundamental concepts such as open balls, neighbourhoods
of points, open sets, compact sets, and so on. Also, we have for functions
f : Λn → R the concepts of the limit, continuity, and properties of
continuous functions on general metric spaces.
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Definition

Let σi , i ∈ {1, 2, . . . , n}, be the forward jump operator in Ti . The operator
σ : Λn → Rn defined by

σ(t) = (σ1(t), σ2(t), . . . , σn(t))

is said to be the forward jump operator in Λn.
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Example

Let n = 4 and Λ4 = R× Z× Z× N2
0. Then

T1 = R, T2 = Z, T3 = Z, T4 = N2
0.

We have that

σ1(t1) = t1, t1 ∈ R, σ2(t2) = t2 + 1, t2 ∈ Z

and

σ3(t3) = t3 + 1, t3 ∈ Z, σ4(t4) =
(√

t4 + 1
)2

, t4 ∈ N2
0.

Hence,
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Example

σ(t) = σ(t1, t2, t3, t4) =
(
t1, t2 + 1, t3 + 1,

(√
t4 + 1

)2)
,

(t1, t2, t3, t4) ∈ T1 × T2 × T3 × T4.
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Example

Let n = 3 and Λ3 = R× N2
0 × 3Z. Then

σ1(t1) = t1, t1 ∈ T1 = R, σ2(t2) =
(√

t2 + 1
)2

, t2 ∈ T2 = N2
0,

and
σ3(t3) = t3 + 3, t3 ∈ T3 = 3Z.

Hence,

σ(t) = σ(t1, t2, t3) =
(
t1,
(√

t2 + 1
)2

, t3 + 3
)
, (t1, t2, t3) ∈ T1×T2×T3.
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Example

Let n = 2 and Λ2 = 2Z× 2N. Here

T1 = 2Z, T2 = 2N.

Then
σ1(t1) = t1 + 2, t1 ∈ T1, σ2(t2) = 2t2, t2 ∈ T2.

Hence,

σ(t) = σ(t1, t2) = (t1 + 2, 2t2), (t1, t2) ∈ T1 × T2.
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Definition

Let ρi , i ∈ {1, 2, . . . , n}, be the backward jump operator in Ti . The
operator ρ : Λn → Rn defined by

ρ(t) = (ρ1(t1), ρ2(t2), . . . , ρn(tn)), t = (t1, t2, . . . , tn) ∈ Λn,

is said to be the backward jump operator in Λn.
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Example

Let n = 4 and Λ4 = R× Z× 3N × N3
0. Here,

T1 = R, T2 = Z, T3 = 3N, T4 = N3
0.

Then

ρ1(t1) = t1, t1 ∈ T1, ρ2(t2) = t2 − 1, t2 ∈ T2,

ρ3(t3) =
t3
3
, t3 ∈ T3 \ {3}, ρ(3) = 3,

ρ4(t4) =
(

3
√
t4 − 1

)3
, t4 ∈ T4 \ {0}, ρ4(0) = 0.

Hence,
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Example

ρ(t) = (ρ1(t1), ρ2(t2), ρ3(t3), ρ4(t4))

=



(
t1, t2 − 1, t33 , (

3
√
t4 − 1)

3
)

if t1 ∈ T1, t2 ∈ T2, t3 ∈ T3 \ {3}, t4 ∈ T4 \ {0},

(t1, t2 − 1, 3, ( 3
√
t4 − 1)3)

if t1 ∈ T1, t2 ∈ T2, t3 = 3, t4 ∈ T4 \ {0}
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Example

ρ(t) =



(
t1, t2 − 1, t33 , 0

)
if t1 ∈ T1, t2 ∈ T2, t3 ∈ T3 \ {3}, t4 = 0,

(t1, t2 − 1, 3, 0)

if t1 ∈ T1, t2 ∈ T2, t3 = 3, t4 = 0.
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Example

Let n = 2 and Λ2 = (4Z,R). Here,

T1 = 4Z, T2 = R.

Then
ρ1(t1) = t1 − 4, t1 ∈ T1, ρ2(t2) = t2, t2 ∈ T2.

Hence,

ρ(t) = (ρ1(t1), ρ2(t2)) = (t1 − 4, t2), t = (t1, t2) ∈ T1 × T2.
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Example

Let n = 3 and Λ3 = Z× Z× 7N. Here,

T1 = Z, T2 = Z, T3 = 7N.

Then

ρ1(t1) = t1 − 1, t1 ∈ T1, ρ2(t2) = t2 − 1, t2 ∈ T2,

ρ3(t3) =
t3
7
, t3 ∈ T3 \ {7}, ρ3(7) = 7.

Hence,
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Example

ρ(t) = (ρ1(t1), ρ2(t2), ρ3(t3))

=


(
t1 − 1, t2 − 1, t37

)
if t1 ∈ T1, t2 ∈ T2, t3 ∈ T3 \ {7},

(t1 − 1, t2 − 1, 7) if t2 ∈ T1, t2 ∈ T2, t3 = 7.
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Definition

For x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn, we write

x ≥ y

whenever
xi ≥ yi for all i = 1, 2, . . . , n.

In a similar way, we understand x > y and x < y and x ≤ y .

Svetlin G. Georgiev Time Scales Analysis Lecture 19 November 12, 2025 30 / 61



Definition

Let t ∈ Λn, t = (t1, t2, . . . , tn).
1. If σ(t) > t, then t is called strictly right-scattered.
2. If σ(t) ≥ t and there are j , l ∈ {1, 2, . . . , n} such that σj(tj) > tj and
σl(tl) = tl , then t is called right-scattered.
3. If t < sup Λn and σ(t) = t, then t is called right-dense.
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Definition

4. If ρ(t) < t, then t is called strictly left-scattered.
5. If ρ(t) ≤ t and there are l , j ∈ {1, 2, . . . , n} such that ρj(tj) < tj and
ρl(tl) = tl , then t is called left-scattered.
6. If t > inf T and t = ρ(t), then t is called left-dense.
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Definition

7. If t is strictly right-scattered and strictly left-scattered, then t is said to
be strictly isolated.
8. If t is right-dense and left-dense, then t is said to be dense. 9. If t is
right-scattered and left-scattered, then t is said to be isolated.
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Example

Let Λ3 = Z× Z× Z. Then, for t = (t1, t2, t3) ∈ Λ3, we have

σ(t) = (σ1(t1), σ2(t2), σ3(t3)) = (t1 + 1, t2 + 1, t3 + 1) > (t1, t2, t3),

i.e., all points of Λ3 are strictly right-scattered. Also,

ρ(t) = (ρ1(t1), ρ2(t2), ρ3(t3)) = (t1 − 1, t2 − 1, t3 − 1) < (t1, t2, t3),

i.e., all points of Λ3 are strictly left-scattered. Consequently, all points of
Λ3 are strictly isolated.
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Example

Let Λ4 = 2Z× R× 2N ×
(
1
3

)N
. Then

σ(t) = (σ1(t1), σ2(t2), σ3(t3), σ4(t4))

= (t1 + 2, t2, 2t3, 3t4) ≥ (t1, t2, t3, t4), t4 ̸=
1

3
.

Therefore, all points (t1, t2, t3, t4) ∈ Λ4, t4 ̸= 1
3 , are right-scattered. We

note that
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Example

(
σ1(t1), σ2(t2), σ3(t3), σ4

(
1

3

))
=

(
t1 + 1, t2, 2t3,

1

3

)
≥
(
t1, t2, t3,

1

3

)
.

From here, all points
(
t1, t2, t3,

1
3

)
are right-scattered. Also,

ρ(t) = (ρ1(t1), ρ2(t2), ρ3(t3), ρ4(t4))

=
(
t1 − 2, t2,

t3
2
,
t4
3

)
≤ (t1, t2, t3, t4) if t3 ̸= 2,

i.e., all points (t1, t2, t3, t4) ∈ Λ4, t3 ̸= 2, are left-scattered. We note that
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Example

ρ(t) = (ρ1(t1), ρ2(t2), ρ3(2), ρ4(t4))

=
(
t1 − 2, t2, 2,

t4
3

)
≤ (t1, t2, 2, t4).

Therefore, all points (t1, t2, 2, t4) ∈ Λ4 are left-scattered. Moreover, the
points

(t1, t2, t3, t4) ∈ Λ4

are isolated.
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Example

Let Λ3 = N×H× R. Then

σ(t) = (σ1(t1), σ2(Hn), σ3(t3))

= (t1 + 1,Hn+1, t3)

≥ (t1,Hn, t3) for (t1,Hn, t3) ∈ Λ3,

i.e., any point (t1,Hn, t3) ∈ Λ3 is right-scattered. Also,
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Example

ρ(t) = (ρ1(t1), ρ2(Hn), ρ3(t3))

= (t1 − 1,Hn−1, t3)

≤ (t1,Hn, t3) for (t1,Hn, t3) ∈ Λ3, t1 ̸= 1, n ̸= 0.
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Example

Therefore, all points (t1,Hn, t3) ∈ Λ3, t1 ̸= 1, n ̸= 0, are left-scattered.
We note that

(ρ1(1), ρ2(Hn), ρ3(t3)) = (1,Hn−1, t3)

≤ (1,Hn, t3) ∈ Λ3, n ∈ N,

(ρ1(t1), ρ2(H0), ρ3(t3)) = (t1 − 1,H0, t3) ≤ (t1,H0, t3), t1 ̸= 1,

(ρ1(1), ρ2(H0), ρ3(t3)) = (1,H0, t3) ≤ (1,H0, t3) ∈ Λ3.
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Example

Therefore, the points

(t1,H0, t3), t1 ̸= 1; (1,Hn, t3), n ∈ N; (1,H0, t3)

are left-scattered. Consequently, all points (t1,Hn, t3) ∈ Λ3 are isolated.
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Definition

The graininess function µ : Λn → [0,∞)n is defined by

µ(t) = (µ1(t1), µ2(t2), . . . , µn(tn)), t = (t1, t2, . . . , tn) ∈ Λn.
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Example

Let Λ3 = 3Z× R× N4
0. Then

T1 = 3Z, T2 = R, T3 = N4
0,

σ1(t1) = t1 + 3, t1 ∈ T1, σ2(t2) = t2, t2 ∈ T2,

σ3(t3) =
(

4
√
t3 + 1

)4
, t3 ∈ T3.

Hence,
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Example

µ1(t1) = σ1(t1)− t1 = t1 + 3− t1 = 3, t1 ∈ T1,

µ2(t2) = σ2(t2)− t2 = t2 − t2 = 0, t2 ∈ T2,

µ3(t3) = σ3(t3)− t3

=
(

4
√
t3 + 1

)4 − t3

= t3 + 4 4

√
t33 + 6 4

√
t23 + 4 4

√
t3 + 1− t3
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Example

= 6
√
t3 + 4 4

√
t3 + 4 4

√
t33 + 1, t3 ∈ T3,

µ(t) = (µ1(t1), µ2(t2), µ3(t3))

=

(
3, 0, 6

√
t3 + 4 4

√
t3 + 4 4

√
t33 + 1

)
, t = (t1, t2, t3) ∈ Λ3.
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Example

Let Λ3 = Z× 2N × 3N. Then

T1 = Z, T2 = 2N, T3 = 3N,

σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = 2t2, t2 ∈ T2,

σ3(t3) = 3t3, t3 ∈ T3.

Hence,
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Example

µ1(t1) = σ1(t1)− t1 = t1 + 1− t1 = 1, t1 ∈ T1,

µ2(t2) = σ2(t2)− t2 = 2t2 − t2 = t2, t2 ∈ T2,

µ3(t3) = σ3(t3)− t3 = 3t3 − t3 = 2t3, t3 ∈ T3,

µ(t) = (µ1(t1), µ2(t2), µ3(t3))

= (1, t2, 2t3), t = (t1, t2, t3) ∈ Λ3.
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Example

Let Λ4 = 2Z× Z× N2
0 × 4N. Then

T1 = 2Z, T2 = Z, T3 = N2
0, T4 = 4N,

σ1(t1) = t1 + 2, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2,

σ3(t3) =
(√

t3 + 1
)2

, t3 ∈ T3, σ4(t4) = 4t4, t4 ∈ 4N.

Hence,
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Example

µ1(t1) = σ1(t1)− t1 = t1 + 2− t1 = 2, t1 ∈ T1,

µ2(t2) = σ2(t2)− t2 = t2 + 1− t2 = 1, t2 ∈ T2,

µ3(t3) = σ3(t3)− t3 =
(√

t3 + 1
)2 − t3 = 2

√
t3 + 1, t3 ∈ T3,

µ4(t4) = σ4(t4)− t4 = 4t4 − t4 = 3t4, t4 ∈ T4,

µ(t) = (µ1(t1), µ2(t2), µ3(t3), µ4(t4))

= (2, 1, 2
√
t3 + 1, 3t4), t = (t1, t2, t3, t4) ∈ Λ4.

Svetlin G. Georgiev Time Scales Analysis Lecture 19 November 12, 2025 49 / 61



Definition

Let f : Λ → R. We introduce the following notations.

f σ(t) = f (σ1(t1), σ2(t2), . . . , σn(tn)) ,

f σi
i (t) = f (t1, . . . , ti−1, σi (ti ), ti+1, . . . , tn) ,

f
σi1

σi2
...σil

i1i2...il
(t) = f (. . . , σi1(ti1), . . . , σi2(ti2), . . . , σil (til ), . . .) ,

where 1 ≤ i1 < i2 < . . . < il ≤ n, im ∈ N, m ∈ {1, 2, . . . , l}, l ∈ N.
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Example

Let Λ2 = 2Z× 2N. Here,

T1 = 2Z, T2 = 2N,

σ1(t1) = t1 + 2, t1 ∈ T1, σ2(t2) = 2t2, t2 ∈ T2.

Let
f (t1, t2) = t21 + t2.

Hence,

f σ(t) = f (σ1(t1), σ2(t2))

= (σ1(t1))
2 + σ2(t2)

Svetlin G. Georgiev Time Scales Analysis Lecture 19 November 12, 2025 51 / 61



Example

= (t1 + 2)2 + 2t2

= t21 + 4t1 + 2t2 + 4,

f σ1
1 (t) = f (σ1(t1), t2)

= (σ1(t1))
2 + t2

= (t1 + 2)2 + t2
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Example

= t21 + 4t1 + t2 + 4,

f σ2
2 (t) = f (t1, σ2(t2))

= t21 + σ2(t2)

= t21 + 2t2, t ∈ Λ2.
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Example

Let Λ3 = 3Z× N× 4N and f : Λ3 → R be defined by

f (t) = t1t2 + t2t3, t = (t1, t2, t3) ∈ Λ3.

We will find

f σ(t), f σ1
1 (t), f σ2

2 (t), f σ3
3 (t), f σ1σ2

12 (t), f σ1σ3
13 (t), f σ2σ3

23 (t)

and
g(t) = f σ(t) + 2f σ1σ2

12 (t)− f σ2σ3
23 (t), t ∈ Λ3.

We have
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Example

T1 = 3Z, T2 = N, T3 = 4N

and

σ1(t1) = t1+3, t1 ∈ T1, σ2(t2) = t2+1, t2 ∈ T2, σ3(t3) = 4t3, t3 ∈ T3.

Hence,

f σ(t) = f (σ1(t1), σ2(t2), σ3(t3))

= σ1(t1)σ2(t2) + σ2(t2)σ3(t3)

= (t1 + 3)(t2 + 1) + (t2 + 1)4t3
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Example

= t1t2 + t1 + 3t2 + 3 + 4t2t3 + 4t3

= t1t2 + 4t2t3 + t1 + 3t2 + 4t3 + 3,

f σ1
1 (t) = f (σ1(t1), t2, t3)

= σ1(t1)t2 + t2t3

= (t1 + 3)t2 + t2t3
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Example

= t1t2 + t2t3 + 3t2,

f σ2
2 (t) = f (t1, σ2(t2))

= t1σ2(t2) + σ2(t2)t3

= t1(t2 + 1) + (t2 + 1)t3

= t1t2 + t2t3 + t1 + t3,
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Example

f σ3
3 (t) = f (t1, t2, σ3(t3))

= t1t2 + t2σ3(t3)

= t1t2 + 4t2t3,

f σ1σ2
12 (t) = f (σ1(t1), σ2(t2), t3)

= σ1(t1)σ2(t2) + σ2(t2)t3
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Example

= (t1 + 3)(t2 + 1) + (t2 + 1)t3

= t1t2 + t2t3 + t1 + 3t2 + t3 + 3,

f σ1σ3
13 (t) = f (σ1(t1), t2, σ3(t3))

= σ1(t1)t2 + t2σ3(t3)
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Example

= (t1 + 3)t2 + 4t2t3

= t1t2 + 4t2t3 + 3t2,

f σ2σ3
23 (t) = f (t1, σ2(t2), σ3(t3))

= t1σ2(t2) + σ2(t2)σ3(t3)

= t1(t2 + 1) + (t2 + 1)4t3
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Example

= t1t2 + 4t2t3 + t1 + 4t3,

g(t) = f σ(t) + 2f σ1σ2
12 (t)− f σ2σ3

23 (t)

= t1t2 + 4t2t3 + t1 + 3t2 + 4t3 + 3

+2t1t2 + 2t2t3 + 2t1 + 6t2 + 2t3 + 6− t1t2 − 4t2t3 − t1 − 4t3

= 2t1t2 + 2t2t3 + 2t1 + 9t2 + 2t3 + 9, t ∈ Λ3.
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