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Example
Let A3 =N x Ny x Z and define f : A3 = R by

f(t) = titats + 2+ t2 + 13, teAd

We will find £518243(t) for t € Aj352"*%. Here, Ty = N, T» = N,
T3 = Z, and

0'1(1'1) =t +1, t €Ty, 0'2(1.‘2) =th+1, treTy,

U3(t3) =t3+1, t3€Ts.

Hence,
V.
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fA1(t) = tts+oi(t) +t

= btz +2t+1, teA3

FELR2(t) = t3, teNB™3,
A1 AxA3 K1K2kK33
fl‘1t2t3 - 1’ te A123 :
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Example
Let A3 = 3N x Ny x Z and define f : A3 — R by

f(t) = t2t3sin(t3), te s
Here, T; = 3N, T, = Ny, T3 = Z, and

O’1(t1)=3t1, t; € T, Uz(tg) =th+1, teTy,

U3(t3) =t3+1, t3€Ts.

Hence,
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A1) = (t+ o1(ts)) 2 sin(ts)
= 4ntdsin(ts), te A

fFELf2(t) = 4ti(to + oa(t2)) sin(ts)

= 4t1(2tr + 1)sin(t3), te€ /\'fé"‘ﬁ,
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sin(t3 + 1) — sin(t3)

FALA2R3 (1Y = 44 (2t + 1
ti1tot3 ( ) 1( 2+ ) U3(t3) _ t3

= 4t;(2tr + 1) (sin(t3 + 1) — sin(t3))

1 1
= 8t1(2t2 +1)sin <§> cos (t3 + 5) | E
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Theorem (Leibniz Formula)

Let S,.(km) be the set consisting of all possible strings of length m,
containing exactly k times o; and m — k times A;. If ft%,_k exists for any

k
a € SIS(m) and gﬁ" exists for any k € {0,1,..., m}, then

holds for any m € N.
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We will use induction. 1. Since
A; A (PWAY]
(fg)f,‘ = ft,' g + f;'a gt,' )

(1) holds for m = 1.
2. We assume (1) holds for some m € N. We will prove

m+1 N

Am+1 Ak
(s =2 | 2 fiown | &' 2)

k=0 \ pesmt

Indeed, ]
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A;TH»I A:—n A,’
() = (()l )
i i
A;
= A
= [ | X for e
k=0 - i i
aES,-(k) t
A o;
m m
A:( Aff+1
= > ok | 85"+ i | 8
k=0 \ s . k=0 \ qestm
L]
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Aj

m N m—+1 Al
= i ao; i
= Z Z f gt,;( + Z Z flm k+1 gtl_k

k=0 \ aes . k=1 \ aes!™,

af

= Z m+lg + Z Z fm k1 | 8k

aes( aesy”

m
+Z Z fcrfvolk+1 gk + Z fag' ﬁgl
k=1

aesi™, aes!m
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m+1

Al
= Z e gt{nl-i—l + Z ﬂ?énﬂ g
aGSI.(nTLl) aESI.(qurl)
m Ak
| X fons | &
k=1 (mt1) ’
a€S;,

i.e., (2) holds. By the principle of mathematical induction, (1) holds for
any m € N. O

v
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We note that (1) holds for m = 0 with the convention that

th‘?:f.

acl

We put

A} =Tk X Tox X ... X Thy,
A,’-’RI,:T]_><...XT,',le,'KXT,'Jrlx...XTn, i:1,2,...,n,

n — . 5 9
/\,-1,-2“.,-/,{1,1,%._%,,1 = XTiex. .. XxTpex ... xTjex...,

wherel< g <ib<...<i<nin€N m=12 ...,/
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If(il,iz, 500g i/) = (1,2,. cog n), then

A? S=AL

iip...iiK1K2...K
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Definition
Assume that f : A" — R is a function and let t € Aj.;,. We define

of(t1, ta,...,t,)  Of(t)  Of
Vit; S Vit Vit

(1) = (1)

to be the number, provided it exists, with the property such that for any
gj > 0, there exists a neighbourhood

U; = (t,' = (5,‘,1‘,'4-(5,') N T;

for some 9; > 0 such that

f(te, ... tic, pi(ti), tigts ooy tn) — F(t1, .oy tim1, Sis tig1y .-y tn)

— £ ' (0)(pi(t:) — s1)| < eilpi(t) —sil (3)

for all s; € U;.

i = = = et
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Definition

We call ftl_v"(t) the partial nabla derivative of f with respect to t; at t. We
say that f is partial nabla differentiable with respect to t; in AJ_ if ft’_v"(t)

exists for all t € Aj, . The function ftl.v" : N, = Riis said to be the partial
nabla derivative with respect to t; of f in A7 .
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The partial nabla derivative is well defined.

Let t € A} for some i € {1,2,...,n}. We assume that the partial nabla

derivative ftl.v"(t) exists and

gi(t) =1fy (1), &(t) =1 (1).

Let &; > 0 be arbitrarily chosen. Then there exists d; > 0 such that for

every
Si € (t,' — 0, ti + (5,‘) NT;,

we have O
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‘f(tl, to, ...y tic1, pi(ti), tix1, -y tn) — F(t1, b2, ooy tic1, Siy tig1, .-y tn)

- a(®)(pi(t) - )| < S loit) — sl (&)
and

f(t, to, ..., tic1, pi(ti), tix1, ..., tn) — F(t1, to, ..., tiz1, S, tig1, .- -, th)

— (0)(pi(t) — )| < 5 loi(t) ~sil. (5)

O
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From (4) and (5), we obtain

f(tl, to,..., t,'_l,/),'(t,'), Gy e oo g tn)

&1(t) — &2(8)] = |en() -

pi(ti)-si
+f(tl7 to,..., ti—1,Sis ti-‘rla 0005 tn) f(tla t,..., ti—17p/(ti)7 ti-‘rla R 1
pi(ti) — si pi(ti) — si
B, iy 0 00 G015 Gifln 00 Ui _ o(t)

pi(ti) — si
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S g]_(t) _ f(tl7 t27 LR ti*l?ﬂi(h)? ti+17 s ooy tn) - f(t17 t27 e ooy t,‘,l,Sh t+
pi(ti) — si
n gz(t) . f(tl, to,...,ti—1, p,‘(t;), Gilg = oo g t,,) — f(tl, to,...,ti—1,Si,
pi(ti) = si

Ej Ej

- 2 2

= £&j.

Because ¢; > 0 was arbitrarily chosen, we conclude that gi(t) = g»(t). [
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Let
A2 =Nx Ny, f(t)=tlty, t=(t,t)e N

Here, T; = N, T, = Ng. We will prove that

(2t1 = 1)1’2 if €Ty, t1>2 teTy,
\%
fo *(t) =
2t if 1 =1, t,€eT,.

We have pl(tl) =t —1forty € Ty, t1 > 2, pl(l) =1. Let e > 0 be
arbitrarily chosen. Then, for every s; € (t1 —e*,t; +¢*), s1 € T1, we

* Z
have, for e* < Tre"

|t1 = 51’ < e’

Hence, for t = (t1, ) € A%m' t; > 2, we get
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f(p1(tr), ) = pi(ta)to
= (t1 —1)°t,
£ (p1(t1), t2) — F(s1, £2) — (201 — 1) t2(pa(t2) — 1))
= |(t1 — 1)%*tr — s3tr — (2t; — Dta(ty — 1 — 51)]
= |(h—-1-—s)(t1 +s1—1to— (2ts — Vto(t1 — 1 — 51)|
= |s1— taf[t2||ts — 51 — 1

< |51 — tl‘(]. -+ t2)|t1 — S5 — 1’
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Fort € A2, t; =1, we have

and

1&1’

F(pr(1), t2) —

Khaled Zennir

f(p1(1), 1) = p2(1)t2 = 1

f(s1,t2) = 2t2(p1(1) —s1)| =

<

Time Scales Analysis Lecture 24

|f(1,t2) — f(s1,t2) — 2t2(1
|t2 — 512t2 — 2t2(1 — 51)|

|1 —51|t2|1 + 51 — 2|

(1+ t)(1 — s1)?

(14 t2)[1 — 51

December 2, 2025
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The proofs of the following theorems repeat the main steps of the proofs
of the corresponding theorems for partial delta derivatives. Thus, these
proofs are omitted and left to the reader.

Let f : A" — R be a function and t € A?m' If f is nabla differentiable with
respect to t; at t, then

lim f(ts) = f(t).

Si—t;

Let f : A" — R, t € A7, and

1K’

lim f(ts) = f(t).

Si—tj

If pi(ti) < t;, then f is nabla differentiable with respect to t; at t and

i _ fipi(t)_f(t)
(0= pi(ti) —ti
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Lett € A, and t; = pi(ti). Then f is partial nabla differentiable with
respect to t; at t if and only if the limit

() = ()

Si—>tj ti —s;

exists as a finite number. In this case,

ftivf(t): lim M

Si—ti ti—s;
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Let t € \?_. Suppose f : A" — R is a function that is partial nabla
d/fferent/able with respect to t; at t. If « € R, then af is partial nabla
differentiable with respect to t; at t and

Let t € AL . Suppose f,g : N\ — R are partial nabla differentiable with
respect to t; at t. Then fg is partial nabla differentiable with respect to t;
at t and

(fe)x (t) = fy ' (D)g (1) + /(1) '(t) = F(t)gy '(t) + fy) (1)l (2)-
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Let f,g : A" — R be partial nabla differentiable with respect to t; at
t € N\].. Assume g{"(t)g(t) # 0. Then gf is partial nabla differentiable
with respect to t; at t and

( 5)Vf _ fy(8)a(t) — f(t)ey (1)

e). V= el
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Theorem (Leibniz Formula)

Let Ql(km ) be the set consisting of all possible strings of length m,
containing exactly k times p;j and m — k times V;. If fﬁ,_k exists for any

k
B € QI.(,:") and th" exists for any k € {0,1,..., m}, then

holds for any m € N.
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We can define higher-order nabla derivatives and also mixed derivatives
obtained by combining both delta and nabla differentiations such as, for

. ViA; ViVA
instance, ft,»tj or ft;tjt/

Let A2 =N x Z, f(t) = t¥ty + t1t3 + t2, t € A2. Here, T; = N, T, = Z,
and

Ul(tl) = t1+1, ¢t €Ty,

O‘2(t2) = t+1, t e Ty,

pa(t1)
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t1 —1 if theTy, t1>2,

1 if tp=1,
pAtt) = tb—1, t €T,
Hence,

A1) = (o1(tr) + t1)to + 13

= (h+l+t)+t3

30/135
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= 2ty + t3 1y, te N2

Vs
v = () ()

[%]

= 2t1 +p2(t2) + 2+ 1

= 21+t -1+t +1

= 2t1+2h, teND.
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Definition

We say that a function f : A" — R is completely delta differentiable at a
point t € A"" if there exist numbers a; and Aj, i,j € {1,2,...,n}
independent of t € A" but, in general, dependent on t% such that for all
t € Us(to),

n

f(t9) — f(t):Za,-(t?— t,-)+§n:a,-(t})—t,-) (6)
i=1

i=1

and, for each i € {1,2,...,n} and all t € Us(t%),
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£7i(t%) — £(t) =Au(oi(t? Z Ai(t? — 1)
1=1,1%#i

(7)

+BM(UI Z /Bll(tl - tl
I=1,I%i
where § > 0 is a sufficiently small real number, Us(t°) is the
d-neighbourhood of t% in A", a;j = (1%, t), B = Bii(t°, t) are defined in
Us(t°), I,i € {1,2,...,n}, such that

lim a;(t% t) = I|m 5,J(t0 t)=0 forall i,je{1,2,...,n}.

t—t0
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If A" = R", then Definition 24 coincides with the classical total
differentiability of functions of n real variables.

Let A2 =2N x N, f(t) = t2 + t3, t € A%. Let t° € A"2 be arbitrarily
chosen. We will prove that f is completely delta differentiable at t°. Here,
T, =2 T, =N, and

O’1(t1):2t1, t; € T, Uz(tg) =th+1, tpeT)H.

Let § > 0 be sufficiently small. For every t € Us(t°), we have
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F(t0) —f(t) = 24+ 2 —¢2
= PP —g e ) =28 =)
+26(83 — 1) — 265(t3 — t2)
= 269(8) — t1) + 269(29 — 1) + (192 — 222 + 2601, — t2)
+(t92 — t2 — 2692 4 2t31)

= 260(8) — t1) + 2t9(t3 — t2) — (8] — t1)> — (5 — t2).

Therefore,
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a1 = —(t? = tl), Qp = —(tg = tz), a; = 2t(1), ar = 2tg.

We note that

lim a1 — lim Qo — 0.
t—t0 t—t0
For t € Us(tY), we have
F(0) — () = of(8])+t° —tf —t;
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= M2 +t7 -] -1
= (260 — )20 + t1) + (3 — t2)(3 + t2)
= 20 —1t)BE -+ 1)+ (8 — )22 — 19 + 1)

= 3820280 — 1) + 26982 — 1) — (280 — 1) (¥ — 11) — (£ — 12)%
Here,

A =3t An =28, Bu=—(2—-t), Ba=—(—t).

We note that
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lim 511 = lim 521 =0.
t—t0 t—t0
For all t € Us(t%), we have

£2(t0) — f(t) = 2+ (B +1)° -t -1
= (-t +t)+ (B +1-t) 0+ 1+ 1)
= (-0)0+t - )+ (0 +1—0)2) +1+ 1t —|t

= 26(8) — t1) + (263 + 1)(8 + 1 — 1)

—(t) — t1)* — (8 + 1 — &)(t3 — to).
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Thus,
A =2t), Ap=204+1, Br=—(—t), Bn=—(-t).

We note that

lim 512 = lim 522 =0.
t—t0 t—t0

Let A2 =7Z x 3N, f(t) = 13, t € A%, Let t° € A? be arbitrarily chosen.
We will prove that the function f is completely delta differentiable at ty.
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Here, Ty = Z, T, = 3V, and
0’1(1.‘1): 1'1-1-].7 t1 ETl, 0'2(1'2) :31'2, [59) GTQ.
Let § > 0 be arbitrarily chosen. For t € Us(t°), we have

F(O)—f(t) = B —nt

= 22 — 02 4 137 — 112
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= (8 —0)6® + u( — )13 + o)

= (8 — )t 4261 89(8 — 1) — t1(t) — 12)?

= (£ — )t9% + 2628912 — 1) — 2699(9 — 1)
+281t9(89 — o) — t1(t9 — t2)?

= 531 — ) +205(8 — o) — 263(85 — R)() — 1)

—t1(t9 — )2
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Here,
2
a1 =132, ap =221, oy =209t — 1), ax=—t1(t5 — t).

We note that

lim o1 = lim ap = 0.
t—t0 t—t0
For t € Us(t%), we have
(%) - f(t) = (5 +1)85° -t

= A +1-0)+2808(6 — ) - (6 +1 - 1)
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260138 — t2) + (8 + 1)83° — 1t
= (0 +1—t1) +2282(12 — 1) — D122

3 A Ry — 2R 2R A G A G — [y
= (6 +1-t)+2065(5 — b) + t(ty — &)(5 + )

—2015(83 — 1)
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= 2 +1— 1) +280283(82 — o) + (18D + 1112
—26069)(13 — t2)
= A AT — ) A 2t (eg — ) - (il — Ee

—10t3 + t102) (85 — 1)

= (1 +1- 1) +2685(85 — 1)
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—(t% — t)t(t9 — 1) + (t1t2 — 0t + 28 — £29) (9 — 1)
= () +1-t0)+2565(8 — ) — () — 1) td(t3 — t2)
+(t1 — ) ea(t) — t2) — (1) — £2)?

= t22(t) +1—t1) +2e083(82 — 1) — (22 + )(8] — t2)(? — t1)

—t9(8) — 1)
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Example

Here,
A =t2) Ay =201, Bu=—(8+0)(t)—t), Ba=-t(2-t).

We note that
lim 511 = lim 621 =0.
t—t0 t—t0

For t € Us(t%), we have

f2(t%) —f(t) = 8(38)° - ut;

= ot9td? — ¢
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= (] — t1) T4 (38 — ) — 5(8) — t1)
—4t0t9(3t) — o) + 9t0t3% — ;3

= (8 —0) 4538 — ) — (8 — )
—4t980(3t9 — o) + 99492 — 1942 + £0t2 — 112

= t2(8) — t7) + 4t9t9(3t) — 1) — t2() — 1)

—42t9(3t) — 1) + (312 — 1) (3t + 1) + () — t1)t3
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= t2(t) — 1) 4+ 4289(3t) — 1)

& - 65°)(1 — 0) + (1t — £5)(38 — ).
Here,
A =13°, An =481, Pfn=16 13, fn==tHt—151.

We note that

lim 512 = lim 522 =0.
t—t0 t—t0
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