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Example

Let Λ3 = N× N0 × Z and define f : Λ3 → R by

f (t) = t1t2t3 + t21 + t22 + t23 , t ∈ Λ3.

We will find f ∆1∆2∆3
t1t2t3 (t) for t ∈ Λκ1κ2κ33

123 . Here, T1 = N, T2 = N0,
T3 = Z, and

σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2,

σ3(t3) = t3 + 1, t3 ∈ T3.

Hence,
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Example

f ∆1
t1 (t) = t2t3 + σ1(t1) + t1

= t2t3 + 2t1 + 1, t ∈ Λκ13
1 ,

f ∆1∆2
t1t2 (t) = t3, t ∈ Λκ1κ23

12 ,

f ∆1∆2∆3
t1t2t3 = 1, t ∈ Λκ1κ2κ33

123 .
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Example

Let Λ3 = 3N × N0 × Z and define f : Λ3 → R by

f (t) = t21 t
2
2 sin(t3), t ∈ Λ3.

Here, T1 = 3N, T2 = N0, T3 = Z, and

σ1(t1) = 3t1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2,

σ3(t3) = t3 + 1, t3 ∈ T3.

Hence,
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Example

f ∆1
t1 (t) = (t1 + σ1(t1))t

2
2 sin(t3)

= 4t1t
2
2 sin(t3), t ∈ Λκ13

1 ,

f ∆1∆2
t1t2 (t) = 4t1(t2 + σ2(t2)) sin(t3)

= 4t1(2t2 + 1) sin(t3), t ∈ Λκ1κ23
12 ,
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Example

f ∆1∆2∆3
t1t2t3 (t) = 4t1(2t2 + 1)

sin(t3 + 1)− sin(t3)

σ3(t3)− t3

= 4t1(2t2 + 1) (sin(t3 + 1)− sin(t3))

= 8t1(2t2 + 1) sin

(
1

2

)
cos

(
t3 +

1

2

)
, t ∈ Λκ1κ2κ33

123 .
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Theorem (Leibniz Formula)

Let S
(m)
ik be the set consisting of all possible strings of length m,

containing exactly k times σi and m − k times ∆i . If f
α
tm−k
i

exists for any

α ∈ S
(m)
ik and g

∆k
i

tki
exists for any k ∈ {0, 1, . . . ,m}, then

(fg)
∆m

i
tmi

=
m∑

k=0

 ∑
α∈S(m)

ik

f α
tm−k
i

 g
∆k

i

tki
(1)

holds for any m ∈ N.
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Proof.

We will use induction. 1. Since

(fg)∆i
ti = f ∆i

ti g + f σi
i g∆i

ti ,

(1) holds for m = 1.
2. We assume (1) holds for some m ∈ N. We will prove

(fg)
∆m+1

i

tm+1
i

=
m+1∑
k=0

 ∑
α∈S(m+1)

ik

f α
tm−k+1
i

 g
∆k

i

tki
. (2)

Indeed,
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Proof.

(fg)
∆m+1

i

tm+1
i

=
(
(fg)

∆m
i

tmi

)∆i

ti

=

 m∑
k=0

 ∑
α∈S(m)

ik

f α
tm−k
i

 g
∆k

i

tki


∆i

ti

=
m∑

k=0

 ∑
α∈S(m)

ik

f α
tm−k
i


∆i

ti

g
∆k

i

tki
+

m∑
k=0

 ∑
α∈S(m)

ik

f α
tm−k
i


σi

g
∆k+1

i

tk+1
i
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Proof.

=
m∑

k=0

 ∑
α∈S(m)

ik

f α
tm−k
i


∆i

ti

g
∆k

i

tki
+

m+1∑
k=1

 ∑
α∈S(m)

ik−1

f ασi

tm−k+1
i

 g
∆k

i

tki

=
∑

α∈S(m)
i0

f α∆i

tm+1
i

g +
m∑

k=1

 ∑
α∈S(m)

ik

f α∆i

tm−k+1
i

 g
∆k

i

tki

+
m∑

k=1

 ∑
α∈S(m)

ik−1

f ασi

tm−k+1
i

 g
∆k

i

tki
+

∑
α∈S(m)

im

f ασi

t0i
g
∆m+1

i

tm+1
i
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Proof.

=
∑

α∈S(m)
i0

f α∆i

tm+1
i

g +
∑

α∈S(m)
im

f ασi

t0i
g
∆m+1

i

tm+1
i

+
m∑

k=1

 ∑
α∈S(m)

ik−1

f ασi

tm−k
i

+
∑

α∈S(m)
ik−1

f α∆i

tm+1−k
i

 g
∆k

i

tki
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Proof.

=

 ∑
α∈S(m+1)

im+1

f α

 g
∆m+1

i

tm+1
i

+

 ∑
α∈S(m+1)

i0

f α
tm+1
i

 g

+
m∑

k=1

 ∑
α∈S(m+1)

ik

f α
tm+1−k
i

 g
∆k

i

tki
,

i.e., (2) holds. By the principle of mathematical induction, (1) holds for
any m ∈ N.
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Remark

We note that (1) holds for m = 0 with the convention that∑
α∈∅

f α
tki

= f .

Definition

We put

Λn
κ = T1κ × T2κ × . . .× Tnκ,

Λn
iκi

= T1 × . . .× Ti−1 × Tiκ × Ti+1 × . . .× Tn, i = 1, 2, . . . , n,

Λn
i1i2...ilκi1

κi2
...κil

= . . .× Ti1κ × . . .× Ti2κ × . . .× Tilκ × . . . ,

where 1 ≤ i1 < i2 < . . . < il ≤ n, im ∈ N, m = 1, 2, . . . , l .
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Remark

If (i1, i2, . . . , il) = (1, 2, . . . , n), then

Λn
i1i2...ilκ1κ2...κl

= Λn
κ.
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Definition

Assume that f : Λn → R is a function and let t ∈ Λiκin. We define

∂f (t1, t2, . . . , tn)

∇i ti
=

∂f (t)

∇i ti
=

∂f

∇i ti
(t) = f ∇i

ti (t)

to be the number, provided it exists, with the property such that for any
εi > 0, there exists a neighbourhood

Ui = (ti − δi , ti + δi ) ∩ Ti

for some δi > 0 such that∣∣∣f (t1, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)− f (t1, . . . , ti−1, si , ti+1, . . . , tn)

− f ∇i
ti (t)(ρi (ti )− si )

∣∣∣ ≤ εi |ρi (ti )− si | (3)

for all si ∈ Ui .
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Definition

We call f ∇i
ti (t) the partial nabla derivative of f with respect to ti at t. We

say that f is partial nabla differentiable with respect to ti in Λn
iκi

if f ∇i
ti (t)

exists for all t ∈ Λn
iκi
. The function f ∇i

ti : Λn
iκi

→ R is said to be the partial
nabla derivative with respect to ti of f in Λn

iκi
.
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Theorem

The partial nabla derivative is well defined.

Proof.

Let t ∈ Λn
iκi

for some i ∈ {1, 2, . . . , n}. We assume that the partial nabla

derivative f ∇i
ti (t) exists and

g1(t) = f ∇i
ti (t), g2(t) = f ∇i

ti (t).

Let εi > 0 be arbitrarily chosen. Then there exists δi > 0 such that for
every

si ∈ (ti − δi , ti + δi ) ∩ Ti ,

we have
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Proof.

∣∣∣f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)− f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

− g1(t)(ρi (ti )− si )
∣∣∣ ≤ εi

2
|ρi (ti )− si | (4)

and∣∣∣f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)− f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

− g2(t)(ρi (ti )− si )
∣∣∣ ≤ εi

2
|ρi (ti )− si |. (5)
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Proof.

From (4) and (5), we obtain

|g1(t)− g2(t)| =
∣∣∣g1(t)− f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)

ρi (ti )−si

+
f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

ρi (ti )− si
+

f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)

ρi (ti )− si

− f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

ρi (ti )− si
− g2(t)

∣∣∣
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Proof.

≤
∣∣∣∣g1(t)− f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)− f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

ρi (ti )− si

∣∣∣∣
+

∣∣∣∣g2(t)− f (t1, t2, . . . , ti−1, ρi (ti ), ti+1, . . . , tn)− f (t1, t2, . . . , ti−1, si , ti+1, . . . , tn)

ρi (ti )− si

∣∣∣∣
≤ εi

2
+

εi
2

= εi .

Because εi > 0 was arbitrarily chosen, we conclude that g1(t) = g2(t).
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Example

Let
Λ2 = N× N0, f (t) = t21 t2, t = (t1, t2) ∈ Λ2.

Here, T1 = N, T2 = N0. We will prove that

f ∇1
t1 (t) =


(2t1 − 1)t2 if t1 ∈ T1, t1 ≥ 2, t2 ∈ T2,

2t2 if t1 = 1, t2 ∈ T2.

We have ρ1(t1) = t1 − 1 for t1 ∈ T1, t1 ≥ 2, ρ1(1) = 1. Let ε > 0 be
arbitrarily chosen. Then, for every s1 ∈ (t1 − ε∗, t1 + ε∗), s1 ∈ T1, we
have, for ε∗ ≤ ε

1+t2
,

|t1 − s1| ≤ ε∗.

Hence, for t = (t1, t2) ∈ Λ2
1κ1

, t1 ≥ 2, we get
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Example

f (ρ1(t1), t2) = ρ21(t1)t2

= (t1 − 1)2t2,

|f (ρ1(t1), t2)− f (s1, t2)− (2t1 − 1)t2(ρ1(t1)− s1)|

= |(t1 − 1)2t2 − s21 t2 − (2t1 − 1)t2(t1 − 1− s1)|

= |(t1 − 1− s1)(t1 + s1 − 1)t2 − (2t1 − 1)t2(t1 − 1− s1)|

= |s1 − t1||t2||t1 − s1 − 1|

≤ |s1 − t1|(1 + t2)|t1 − s1 − 1|

≤ ε∗(1 + t2)|t1 − s1 − 1|

≤ ε|t1 − s1 − 1|.

Khaled Zennir Time Scales Analysis Lecture 24 December 2, 2025 22 / 135



Example

For t ∈ Λ2
1κ1

, t1 = 1, we have

f (ρ1(1), t2) = ρ21(1)t2 = t2

and

|f (ρ1(1), t2)− f (s1, t2)− 2t2(ρ1(1)− s1)| = |f (1, t2)− f (s1, t2)− 2t2(1− s1)|

= |t2 − s21 t2 − 2t2(1− s1)|

= |1− s1|t2|1 + s1 − 2|

≤ (1 + t2)(1− s1)
2

≤ ε∗(1 + t2)|1− s1|

≤ ε|1− s1|.
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The proofs of the following theorems repeat the main steps of the proofs
of the corresponding theorems for partial delta derivatives. Thus, these
proofs are omitted and left to the reader.

Theorem

Let f : Λn → R be a function and t ∈ Λn
iκi
. If f is nabla differentiable with

respect to ti at t, then
lim
si→ti

f (tsi ) = f (t).

Theorem

Let f : Λn → R, t ∈ Λn
iκi
, and

lim
si→ti

f (tsi ) = f (t).

If ρi (ti ) < ti , then f is nabla differentiable with respect to ti at t and

f ∇i
ti (t) =

f ρii (t)− f (t)

ρi (ti )− ti
.
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Theorem

Let t ∈ Λn
iκi

and ti = ρi (ti ). Then f is partial nabla differentiable with
respect to ti at t if and only if the limit

lim
si→ti

f (t)− f (tsi )

ti − si

exists as a finite number. In this case,

f ∇i
ti (t) = lim

si→ti

f (t)− f (tsi )

ti − si
.
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Theorem

Let t ∈ Λn
iκi
. Suppose f : Λn → R is a function that is partial nabla

differentiable with respect to ti at t. If α ∈ R, then αf is partial nabla
differentiable with respect to ti at t and

(αf )∇i
ti

(t) = αf ∇i
ti (t).

Theorem

Let t ∈ Λn
iκi
. Suppose f , g : Λn → R are partial nabla differentiable with

respect to ti at t. Then fg is partial nabla differentiable with respect to ti
at t and

(fg)∇i
ti (t) = f ∇i

ti (t)g(t) + f ρii (t)g∇i
ti (t) = f (t)g∇i

ti (t) + f ∇i
ti (t)gρi

i (t).
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Theorem

Let f , g : Λn → R be partial nabla differentiable with respect to ti at
t ∈ Λn

iκi
. Assume gρi

i (t)g(t) ̸= 0. Then f
g is partial nabla differentiable

with respect to ti at t and(
f

g

)∇i

ti

(t) =
f ∇i
ti (t)g(t)− f (t)g∇i

ti (t)

gρi
i (t)g(t)

.
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Theorem (Leibniz Formula)

Let Q
(m)
ik be the set consisting of all possible strings of length m,

containing exactly k times ρi and m − k times ∇i . If f
β

tm−k
i

exists for any

β ∈ Q
(m)
ik and g

∇k
i

tki
exists for any k ∈ {0, 1, . . . ,m}, then

(fg)
∇m

i
tmi

=
m∑

k=0

 ∑
β∈Q(m)

ik

f β
tm−k
i

 g
∇k

i

tki

holds for any m ∈ N.
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We can define higher-order nabla derivatives and also mixed derivatives
obtained by combining both delta and nabla differentiations such as, for

instance, f
∇i∆j
ti tj or f

∇i∇j∆l
ti tj tl .

Example

Let Λ2 = N× Z, f (t) = t21 t2 + t1t
2
2 + t22 , t ∈ Λ2. Here, T1 = N, T2 = Z,

and

σ1(t1) = t1 + 1, t1 ∈ T1,

σ2(t2) = t2 + 1, t2 ∈ T2,

ρ1(t1)
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Example

=


t1 − 1 if t1 ∈ T1, t1 ≥ 2,

1 if t1 = 1,

ρ2(t2) = t2 − 1, t2 ∈ T2.

Hence,

f ∆1
t1 (t) = (σ1(t1) + t1)t2 + t22

= (t1 + 1 + t1)t2 + t22
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Example

= 2t1t2 + t22 + t2, t ∈ Λκ12
1 ,

f ∆1∇2
t1t2 (t) =

(
f ∆1
t1

)∇2

t2
(t)

= 2t1 + ρ2(t2) + t2 + 1

= 2t1 + t2 − 1 + t2 + 1

= 2t1 + 2t2, t ∈ Λκ12
12κ2

.
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Definition

We say that a function f : Λn → R is completely delta differentiable at a
point t0 ∈ Λκn if there exist numbers ai and Aij , i , j ∈ {1, 2, . . . , n}
independent of t ∈ Λn but, in general, dependent on t0, such that for all
t ∈ Uδ(t0),

f (t0)− f (t) =
n∑

i=1

ai (t
0
i − ti ) +

n∑
i=1

αi (t
0
i − ti ) (6)

and, for each i ∈ {1, 2, . . . , n} and all t ∈ Uδ(t
0),
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Definition

f σi
i (t0)− f (t) =Aii (σi (t

0
i )− ti ) +

n∑
l=1,l ̸=i

Ali (t
0
l − tl)

+ βii (σi (t
0
i )− ti ) +

n∑
l=1,l ̸=i

βli (t
0
l − tl),

(7)

where δ > 0 is a sufficiently small real number, Uδ(t
0) is the

δ-neighbourhood of t0 in Λn, αi = αi (t
0, t), βli = βli (t

0, t) are defined in
Uδ(t

0), l , i ∈ {1, 2, . . . , n}, such that

lim
t→t0

αi (t
0, t) = lim

t→t0
βij(t

0, t) = 0 for all i , j ∈ {1, 2, . . . , n}.
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Remark

If Λn = Rn, then Definition 24 coincides with the classical total
differentiability of functions of n real variables.

Example

Let Λ2 = 2N × N, f (t) = t21 + t22 , t ∈ Λ2. Let t0 ∈ Λκ2 be arbitrarily
chosen. We will prove that f is completely delta differentiable at t0. Here,
T1 = 2N, T2 = N, and

σ1(t1) = 2t1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2.

Let δ > 0 be sufficiently small. For every t ∈ Uδ(t
0), we have
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Example

f (t0)− f (t) = t021 + t022 − t21 − t22

= t021 + t022 − t21 − t22 + 2t01 (t
0
1 − t1)− 2t01 (t

0
1 − t1)

+2t02 (t
0
2 − t2)− 2t02 (t

0
2 − t2)

= 2t01 (t
0
1 − t1) + 2t02 (t

0
2 − t2) + (t021 − 2t021 + 2t01 t1 − t21 )

+(t022 − t22 − 2t022 + 2t02 t2)

= 2t01 (t
0
1 − t1) + 2t02 (t

0
2 − t2)− (t01 − t1)

2 − (t02 − t2)
2.

Therefore,
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Example

α1 = −(t01 − t1), α2 = −(t02 − t2), a1 = 2t01 , a2 = 2t02 .

We note that
lim
t→t0

α1 = lim
t→t0

α2 = 0.

For t ∈ Uδ(t
0), we have

f σ1
1 (t0)− f (t) = σ2

1(t
0
1 ) + t022 − t21 − t22
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Example

= 4t021 + t022 − t21 − t22

= (2t01 − t1)(2t
0
1 + t1) + (t02 − t2)(t

0
2 + t2)

= (2t01 − t1)(3t
0
1 − t01 + t1) + (t02 − t2)(2t

0
2 − t02 + t2)

= 3t01 (2t
0
1 − t1) + 2t02 (t

0
2 − t2)− (2t01 − t1)(t

0
1 − t1)− (t02 − t2)

2.

Here,

A11 = 3t01 , A21 = 2t02 , β11 = −(t01 − t1), β21 = −(t02 − t2).

We note that
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Example

lim
t→t0

β11 = lim
t→t0

β21 = 0.

For all t ∈ Uδ(t
0), we have

f σ2
2 (t0)− f (t) = t021 + (t02 + 1)2 − t21 − t22

= (t01 − t1)(t
0
1 + t1) + (t02 + 1− t2)(t

0
2 + 1 + t2)

= (t01 − t1)(2t
0
1 + t1 − t01 ) + (t02 + 1− t2)(2t

0
2 + 1 + t2 − t02 )

= 2t01 (t
0
1 − t1) + (2t02 + 1)(t02 + 1− t2)

−(t01 − t1)
2 − (t02 + 1− t2)(t

0
2 − t2).
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Example

Thus,

A12 = 2t01 , A22 = 2t02 + 1, β12 = −(t01 − t1), β22 = −(t02 − t2).

We note that
lim
t→t0

β12 = lim
t→t0

β22 = 0.

Example

Let Λ2 = Z× 3N, f (t) = t1t
2
2 , t ∈ Λ2. Let t0 ∈ Λ2 be arbitrarily chosen.

We will prove that the function f is completely delta differentiable at t0.
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Example

Here, T1 = Z, T2 = 3N, and

σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = 3t2, t2 ∈ T2.

Let δ > 0 be arbitrarily chosen. For t ∈ Uδ(t
0), we have

f (t0)− f (t) = t01 t
02
2 − t1t

2
2

= t01 t
02
2 − t1t

02
2 + t1t

02
2 − t1t

2
2
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Example

= (t01 − t1)t
02
2 + t1(t

0
2 − t2)(t

0
2 + t2)

= (t01 − t1)t
02
2 + 2t1t

0
2 (t

0
2 − t2)− t1(t

0
2 − t2)

2

= (t01 − t1)t
02
2 + 2t01 t

0
2 (t

0
2 − t2)− 2t01 t

0
2 (t

0
2 − t2)

+2t1t
0
2 (t

0
2 − t2)− t1(t

0
2 − t2)

2

= t022 (t01 − t1) + 2t01 t
0
2 (t

0
2 − t2)− 2t02 (t

0
2 − t2)(t

0
1 − t1)

−t1(t
0
2 − t2)

2.
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Example

Here,

a1 = t022 , a2 = 2t01 t
0
2 , α1 = −2t02 (t

0
2 − t2), α2 = −t1(t

0
2 − t2).

We note that
lim
t→t0

α1 = lim
t→t0

α2 = 0.

For t ∈ Uδ(t
0), we have

f σ1
1 (t0)− f (t) = (t01 + 1)t022 − t1t

2
2

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2)− t022 (t01 + 1− t1)
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Example

−2t01 t
0
2 (t

0
2 − t2) + (t01 + 1)t022 − t1t

2
2

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2)− t01 t

02
2

−t022 + t1t
02
2 − 2t01 t

02
2 + 2t01 t

0
2 t2 + t01 t

02
2 + t022 − t1t

2
2

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2) + t1(t

0
2 − t2)(t

0
2 + t2)

−2t01 t
0
2 (t

0
2 − t2)
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Example

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2) + (t1t

0
2 + t1t2

−2t01 t
0
2 )(t

0
2 − t2)

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2) + (t1t

0
2 − t01 t

0
2

−t01 t
0
2 + t1t2)(t

0
2 − t2)

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2)
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Example

−(t01 − t1)t
0
2 (t

0
2 − t2) + (t1t2 − t01 t2 + t01 t2 − t01 t

0
2 )(t

0
2 − t2)

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2)− (t01 − t1)t

0
2 (t

0
2 − t2)

+(t1 − t01 )t2(t
0
2 − t2)− t01 (t

0
2 − t2)

2

= t022 (t01 + 1− t1) + 2t01 t
0
2 (t

0
2 − t2)− (t2 + t02 )(t

0
2 − t2)(t

0
1 − t1)

−t01 (t
0
2 − t2)

2.
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Example

Here,

A11 = t022 , A21 = 2t01 t
0
2 , β11 = −(t02+t2)(t

0
2−t2), β21 = −t01 (t

0
2−t2).

We note that
lim
t→t0

β11 = lim
t→t0

β21 = 0.

For t ∈ Uδ(t
0), we have

f σ2
2 (t0)− f (t) = t01 (3t

0
2 )

2 − t1t
2
2

= 9t01 t
02
2 − t1t

2
2
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Example

= t022 (t01 − t1) + 4t01 t
0
2 (3t

0
2 − t2)− t022 (t01 − t1)

−4t01 t
0
2 (3t

0
2 − t2) + 9t01 t

02
2 − t1t

2
2

= t022 (t01 − t1) + 4t01 t
0
2 (3t

0
2 − t2)− t022 (t01 − t1)

−4t01 t
0
2 (3t

0
2 − t2) + 9t01 t

02
2 − t01 t

2
2 + t01 t

2
2 − t1t

2
2

= t022 (t01 − t1) + 4t01 t
0
2 (3t

0
2 − t2)− t022 (t01 − t1)

−4t01 t
0
2 (3t

0
2 − t2) + t01 (3t

0
2 − t2)(3t

0
2 + t2) + (t01 − t1)t

2
2
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Example

= t022 (t01 − t1) + 4t01 t
0
2 (3t

0
2 − t2)

+(t22 − t022 )(t01 − t1) + (t01 t2 − t01 t
0
2 )(3t

0
2 − t2).

Here,

A12 = t022 , A22 = 4t01 t
0
2 , β12 = t22 − t022 , β22 = t01 t2 − t01 t

0
2 .

We note that
lim
t→t0

β12 = lim
t→t0

β22 = 0.
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