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Theorem (Mean Value Theorem)

Let f : Λn → R, x , y ∈ Λn, α = mini∈{1,...,n} xi , β = maxi∈{1,...,n} yi .
Assume f is continuous on

[α, β]× [α, β]× · · · × [α, β] ⊂ Λn

and f ∆i
xi

(x) exists for all x ∈ Λκin
i . Then there exist numbers

ξi , ηi ∈ [α, β), i ∈ {1, 2, . . . , n}, such that
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Theorem

f ∆1
x1 (ξ1, x2, . . . , xn)(x1 − y1) + f ∆2

x2 (y1, ξ2, . . . , xn)(x2 − y2)

+ · · ·+ f ∆n
xn (y1, y2, . . . , ξn)(xn − yn) ≤ f (x)− f (y)

≤ f ∆1
x1 (η1, x2, . . . , xn)(x1 − y1) + f ∆2

x2 (y1, η2, . . . , xn)(x2 − y2)

+ · · ·+ f ∆n
xn (y1, y2, . . . , ηn)(xn − yn).

(1)
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Proof.

We have

f (x)− f (y) =f (x1, x2, . . . , xn)− f (y1, x2, . . . , xn) + f (y1, x2, . . . , xn)

− f (y1, y2, x3, . . . , xn) + f (y1, y2, x3, . . . , xn)

− · · ·+ f (y1, y2, . . . , yn−1, xn)− f (y1, y2, . . . , yn−1, yn).
(2)

Using the mean value theorem, Theorem ??, there exist numbers
ξi , ηi ∈ [α, β), i ∈ {1, 2, . . . , n}, such that
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Proof.

f ∆1
x1 (ξ1, x2, . . . , xn)(x1 − y1) ≤ f (x1, x2, . . . , xn)− f (y1, x2, . . . , xn)

≤ f ∆1
x1 (η1, x2, . . . , xn)(x1 − y1),

f ∆2
x2 (y1, ξ2, . . . , xn)(x2 − y2) ≤ f (y1, x2, . . . , xn)− f (y1, y2, . . . , xn)
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Proof.

≤ f ∆2
x2 (y1, η2, . . . , xn)(x2 − y2),

...

f ∆n
xn (y1, y2, . . . , xn)(xn − yn) ≤ f (y1, y2, . . . , xn)− f (y1, y2, . . . , yn)

≤ f ∆n
xn (y1, y2, . . . , ηn)(xn − yn).

Thus, using (2), we get (1).

Khaled Zennir Time Scales Analysis Lecture 26 December 9, 2025 6 / 54



Corollary

Suppose f : Λn → R is a continuous function and f ∆i
xi

(x) exists for every
x ∈ Λκin

i , i ∈ {1, 2, . . . , n}. If these derivatives are identically zero, then f
is a constant function on Λn.
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Theorem

Suppose the function f : Λn → R is continuous and has first-order partial
delta derivatives f ∆i

t1 (t) in some neighbourhood Uδ(t
0) of the point

t0 ∈ Λκn. If these derivatives are continuous at the point t0, then f is
completely delta differentiable at t0.

Proof.

We have

f (t0)− f (t) = f (t0)− f (t1, t
0
2 , . . . , t

0
n) + f (t1, t

0
2 , . . . , t

0
n)− · · ·

+f (t1, t2, . . . , tn−1, t
0
n)− f (t1, t2, . . . , tn).
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Proof.

By the one-variable case, we have

f (t0)− f (t1, t
0
2 , . . . , t

0
n) = f ∆1

t1 (t0)(t01 − t1) + α1(t
0
1 − t1)

for (t1, t
0
2 , . . . , t

0
n) ∈ Uδ(t

0), where

α1 = α1(t
0, t1), α1 → 0 as (t1, t

0
2 , . . . , t

0
n) → (t01 , t

0
2 , . . . , t

0
n).

Further, applying the one-variable mean value result, we get
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Proof.

f ∆2
t2 (t1, ξ1, . . . , t

0
n)(t

0
2 − t2) ≤f (t1, t

0
2 , . . . , t

0
n)− f (t1, t2, . . . , t

0
n)

≤f ∆2
t2 (t1, ξ2, . . . , t

0
n)(t

0
2 − t2),

(3)

where ξ1, ξ2 ∈ [α, β) and α = min{t02 , t2}, β = max{t02 , t2}.
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Proof.

Since ξ1, ξ2 → t02 as t2 → t02 and f ∆2
t2 (·) is continuous at t0, we get

lim
t→t0

f ∆2
t2 (t1, ξ1, . . . , t

0
n) = lim

t→t0
f ∆2
t2 (t1, ξ2, . . . , t

0
n) = f ∆2

t2 (t0).

Thus, using (3), we find

f (t1, t
0
2 , . . . , t

0
n)− f (t1, t2, . . . , t

0
n) = f ∆2

t2 (t0)(t02 − t2) + α2(t
0
2 − t2),

where α2 = α2(t
0, t1, t2), α2 → 0 as t → t0, and so on,

f (t1, t2, . . . , t
0
n)− f (t1, t2, . . . , tn) = f ∆n

tn (t0)(t0n − tn) + αn(t
0
n − tn),

where αn = αn(t
0, t1, t2, . . . , tn), αn → 0 as t → t0.
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Proof.

Consequently,

f (t0)− f (t) =
n∑

i=1

f ∆i
ti (t0)(t0i − ti ) +

n∑
i=1

αi (t
0
i − ti ). (4)

Now, we consider the difference

f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn)

= f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t01 , t

0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)

+ f (t01 , t
0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)− f (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn).

(5)
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Proof.

Using the definition of the partial delta derivative, we get

f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t01 , t

0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)

= f ∆i
ti (t0)(σi (t

0
i )− t0i ) + βii (σi (t

0
i )− t0i ). (6)

Substituting (4) and (6) in (5), we obtain
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Proof.

f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t)

= f ∆i
ti (t0)(σi (t

0
i )− ti ) + βii (σi (t

0
i )− ti )

+
n∑

i=1

f ∆i
ti (t0)(t0i − ti ) +

n∑
i=1

αi (t
0
i − ti ).

Therefore, the function f is completely delta differentiable at t0.
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Theorem

Assume f : Λn → R is a continuous function that has partial derivatives
f ∆i
ti (t), i ∈ {1, 2, . . . , n}, in a union of some neighbourhoods of the points
t0 and (

σ1(t
0
1 ), . . . , σi (t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n)
)
.

If these derivatives are continuous at the point t0 and, moreover,

f ∆i
ti (σ1(t

0
1 ), . . . , σi−1(t

0
i−1), ti , σi+1(t

0
i+1), . . . , σn(t

0
n))

is continuous at ti = t0i , then f is σi -completely delta differentiable at t0.
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Proof.

From Theorem 4, it follows that the function f is completely delta
differentiable at t0. Now, we consider the difference

f (σ1(t
0
1 ), σ2(t

0
2 ), . . . , σn(t

0
n))− f (t0)

= f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t01 , t

0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)

− f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n) + f (σ1(t

0
1 ), σ2(t

0
2 ), . . . , σn(t

0
n)).
(7)
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Proof.

Using the definition of the partial delta derivative, we have

f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)− f (t01 , t

0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)

= f ∆i
ti (t0)(σi (t

0
i )− t0i ). (8)

Also,

f (σ1(t
0
1 ), σ2(t

0
2 ), . . . , σn(t

0
n))− f (t01 , t

0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)
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Proof.

= f (σ1(t
0
1 ), σ2(t

0
2 ), . . . , σi−1(t

0
i−1), σi (t

0
i ), σi+1(t

0
i+1), . . . , σn(t

0
n))

−f (σ1(t
0
1 ), σ2(t

0
2 ) . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))

+f (σ1(t
0
1 ), σ2(t

0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))

−f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)
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Proof.

= f ∆i
ti (σ1(t

0
1 ), σ2(t

0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))(σi (t

0
i )− t0i )

+f (σ1(t
0
1 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))

−f (t01 , σ2(t
0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))

+f (t01 , σ2(t
0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))

− · · ·
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Proof.

+f (t01 , t
0
2 , . . . , t

0
i−1, t

0
i , t

0
i+1, . . . , t

0
n)

−f (t01 , t
0
2 , . . . , t

0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)

= f ∆1
t1 (σ1(t

0
1 ), σ2(t

0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))(σi (t

0
i )− t0i )
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Proof.

+f ∆1
t1 (t01 , σ2(t

0
2 ), . . . , σi−1(t

0
i−1), t

0
i , σi+1(t

0
i+1), . . . , σn(t

0
n))(σ1(t

0
1 )− t01 )

+ · · ·

+f ∆n
tn (t0)(σn(t

0
n)− t0n)− f ∆i

ti (t0)(σi (t
0
i )− t0i ).

Hence, using (7) and (8), we conclude that f is σi -completely delta
differentiable at t0.
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Theorem

Suppose the function f : Λn → R has mixed partial derivatives

f
∆i∆j
ti tj (t) and f

∆j∆i
tj ti (t)

in some neighbourhood of the point t0 ∈ Λ
κiκjn
ij . If these derivatives are

continuous at the point t0, then

f
∆i∆j
ti tj (t0) = f

∆j∆i
tj ti (t0).

Here, i , j ∈ {1, 2, . . . , n}, i ̸= j .
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Proof.

For convenience, we suppose that i < j . Let

Φ(t) = f (t1, . . . , ti−1, σi (t
0
i ), ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f (t1, . . . , ti−1, ti , ti+1, . . . , tj−1, σj(t
0
j ), tj+1, . . . , tn)

−f (t1, . . . , ti−1, σi (t
0
i ), ti+1, . . . , tj−1, tj , tj+1, . . . , tn) + f (t)

and
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Proof.

ϕ(ti ) = f (t1, . . . , ti−1, ti , ti+1, . . . , tj−1, σj(t
0
j ), tj+1, . . . , tn)− f (t).

Then

ϕ(σi (t
0
i )) = f (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f (t1, . . . , ti−1, σi (t
0
i ), ti+1, . . . , tn).

Therefore,
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Proof.

Φ(t) = ϕ(σi (t
0
i ))− ϕ(ti ).

Hence, using the mean value theorem, there exist points ξ1i , ξ
2
i ∈ [αi , βi ),

where
αi = min{ti , σi (t0i )}, βi = max{ti , σi (t0i )},

such that

ϕ∆(ξ1i )(σi (t
0
i )− ti ) ≤ ϕ(σi (t

0
i ))− ϕ(ti ) ≤ ϕ∆(ξ2i )(σi (t

0
i )− ti ),

i.e.,
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Proof.

(
f ∆i
ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tn)

)
(σi (t

0
i )− ti )

≤ Φ(t)

≤
(
f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tn)

)
(σi (t

0
i )− ti ),

whereupon
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Proof.

f ∆i
ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tn)

≤ Φ(t)

σi (t0i )− ti

≤ f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tn)

if σi (t
0
i ) > ti , and
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Proof.

f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tn)

≤ Φ(t)

σi (t0i )− ti

≤ f ∆i
ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f ∆i
ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tn)

if σi (t
0
i ) < ti .
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Proof.

Without loss of generality, we assume that σi (t
0
i ) > ti . Again, we apply

the mean value theorem and find that there exist ξ1j , ξ
2
j ∈ [αj , βj), where

αj = min{σj(t0j ), tj}, βj = max{σj(t0j ), tj},

such that

f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, ξ

1
j , tj+1, . . . , tn)(σj(t

0
j )− tj)

≤ Φ(t)

σi (t0i )− ti

≤ f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, ξ

2
j , tj+1, . . . , tn)(σj(t

0
j )− tj),

from where

Khaled Zennir Time Scales Analysis Lecture 26 December 9, 2025 29 / 54



Proof.

f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, ξ

1
j , tj+1, . . . , tn)

≤ Φ(t)

(σj(t0j )− tj)(σi (t0i )− ti )

≤ f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, ξ

2
j , tj+1, . . . , tn)

if σj(t
0
j ) > tj , and

f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, ξ

2
j , tj+1, . . . , tn)
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Proof.

≤ Φ(t)

(σj(t0j )− tj)(σi (t0i )− ti )

≤ f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, ξ

1
j , tj+1, . . . , tn)

if σj(t
0
j ) < tj . Without loss of generality, we assume that σj(t

0
j ) > tj .

Since f
∆j∆i
tj ti is continuous at t0, we get

lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

1
i , ti+1, . . . , tj−1, ξ

1
j , tj+1, . . . , tn) = f

∆j∆i
tj ti (t0)
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Proof.

≤ lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

Φ(t)

(σj(t0j )− tj)(σi (t0i )− ti )

≤ lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

f
∆j∆i
tj ti (t1, . . . , ti−1, ξ

2
i , ti+1, . . . , tj−1, ξ

2
j , tj+1, . . . , tn)

= f
∆j∆i
tj ti (t0),

i.e.,

f
∆j∆i
tj ti (t0) = lim

t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

Φ(t)

(σj(t0i )− tj)(σi (t0i )− ti )
. (9)
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Proof.

Let

ψ(tj) = f (t1, . . . , ti−1, σi (t
0
i ), ti+1, . . . , tj−1, tj , tj+1, . . . , tn)− f (t).

Thus,

ψ(σj(t
0
j )) = f (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, σj(t

0
j ), tj+1, . . . , tn)

−f (t1, . . . , tj−1, σj(t
0
j ), tj+1, . . . , tn).

Hence,
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Proof.

Φ(t) = ψ(σj(t
0
j ))− ψ(tj).

From the mean value theorem, it follows that there exist η1j , η
2
j ∈ [αj , βj)

such that

ψ∆(η1j )(σj(t
0
j )− tj) ≤ ψ(σj(t

0
j ))− ψ(tj) ≤ ψ∆(η2j )(σj(t

0
j )− tj),

i.e., (
f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

−f
∆j
tj (t1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

)
(σj(t

0
j )− tj)
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Proof.

≤ Φ(t)

≤
(
f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

−f
∆j
tj (t1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

)
(σj(t

0
j )− tj),

whereupon

f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)
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Proof.

−f
∆j
tj (t1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

≤ Φ(t)

(σj(t0j )− tj)

≤
(
f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

−f
∆j
tj (t1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

)
if σj(t

0
j ) > tj , and

f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)
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Proof.

−f
∆j
tj (t1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

≤ Φ(t)

(σj(t0j )− tj)

≤
(
f
∆j
tj (t1, . . . , ti−1, σi (t

0
i ), ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

−f
∆j
tj (t1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

)
if σj(t

0
j ) < tj . Without loss of generality, we suppose that σj(t

0
j ) > tj .

Again, we apply the mean value theorem and get
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Proof.

η1i , η
2
i ∈ [αi , βi ) such that

f
∆i∆j
ti tj (t1, . . . , ti−1, η

1
i , ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)(σi (t

0
i )− ti )

≤ Φ(t)

(σj(t0j )− tj)

≤ f
∆i∆j
ti tj (t1, . . . , ti−1, η

2
i , ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)(σi (t

0
i )− ti ),

from where

f
∆i∆j
ti tj (t1, . . . , ti−1, η

1
i , ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)
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Proof.

≤ Φ(t)

(σi (t0i )− ti )(σj(t0j )− tj)

≤ f
∆i∆j
ti tj (t1, . . . , ti−1, η

2
i , ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

if σi (t
0
i ) > ti , and

f
∆i∆j
ti tj (t1, . . . , ti−1, η

2
i , ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn)

≤ Φ(t)

(σi (t0i )− ti )(σj(t0j )− tj)

≤ f
∆i∆j
ti tj (t1, . . . , ti−1, η

1
i , ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn)

if σi (t
0
i ) < ti .
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Proof.

Without loss of generality, we assume that σi (t
0
i ) > ti . Then

lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

f
∆i∆j
ti tj (t1, . . . , ti−1, η

1
i , ti+1, . . . , tj−1, η

1
j , tj+1, . . . , tn) = f

∆i∆j
ti tj (t0)

≤ lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

Φ(t)

(σi (t0i )− ti )(σj(t0j )− tj)

≤ lim
t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

f
∆i∆j
ti tj (t1, . . . , ti−1, η

2
i , ti+1, . . . , tj−1, η

2
j , tj+1, . . . , tn) = f

∆i∆j
ti tj (t0),

i.e.,
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Proof.

f
∆i∆j
ti tj (t0) = lim

t → t0

ti ̸= σi (t
0
i )

tj ̸= σj(t
0
j )

Φ(t)

(σi (t0i )− ti )(σj(t0j )− tj)
.

From the last equality and from (9), we find

f
∆i∆j
ti tj (t0) = f

∆j∆i
tj ti (t0),

completing the proof.
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Example

Let Λ2 = N× Z and define f : Λ2 → R by

f (t) = t21 t2 + t1t
2
2 , t ∈ Λ2.

Here,
T1 = N, T2 = Z

and
σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2.

Hence,

f ∆1
t1 (t) = (σ1(t1) + t1)t2 + t22
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Example

= (2t1 + 1)t2 + t22 ,

f ∆1∆2
t1t2 (t) = 2t1 + 1 + σ2(t2) + t2

= 2t1 + 2t2 + 2,

f ∆2
t2 (t) = t21 + (σ2(t2) + t2)t1

= t21 + (2t2 + 1)t1,
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Example

f ∆2∆1
t2t1 (t) = σ1(t1) + t1 + 2t2 + 1

= 2t1 + 2t2 + 2, t ∈ Λ2.
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Example

Consequently,
f ∆1∆2
t1t2 (t) = f ∆2∆1

t2t1 (t), t ∈ Λ2.
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Example

Let Λ2 = 2N × N and define f : Λ2 → R by

f (t) = (log t2)t1 + sin t1, t ∈ Λ2.

Here,
T1 = 2N, T2 = N

and
σ1(t1) = 2t1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2.

Hence,

f ∆1
t1 (t) = log t2 +

sin(σ1(t1))− sin t1
σ1(t1)− t1
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Example

= log t2 +
sin(2t1)− sin(t1)

2t1 − t1

= log t2 + 2
sin t1

2 cos 3t1
2

t1
,

f ∆1∆2
t1t2 (t) =

log(σ2(t2))− log(t2)

σ2(t2)− t2

=
log(t2 + 1)− log(t2)

t2 + 1− t2
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Example

= log
t2 + 1

t2
,

f ∆2
t2 (t) =

log(σ2(t2))− log t2
σ2(t2)− t2

t1

=
log(t2 + 1)− log(t2)

t2 + 1− t2
t1

= log
t2 + 1

t2
t1,
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Example

f ∆2∆1
t2t1 (t) = log

t2 + 1

t2
, t ∈ Λ2.

Consequently,
f ∆1∆2
t1t2 (t) = f ∆2∆1

t2t1 (t), t ∈ Λ2.
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Example

Let
T1 = [0, 2]× {4}, T2 = [0, 2],

where [0, 2] is real number interval. Define f : T1 × T2 → R by

f (t) = t1 + t1t2, t ∈ [0, 2]× [0, 2]

and
f (4, t2) = t22 , t2 ∈ [0, 2].

This yields
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Example

f ∆1
t1 (2, t2) =

f (σ1(2), t2)− f (2, t2)

σ1(2)− 2

=
f (4, t2)− f (2, t2)

2
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Example

=
t22 − 2− 2t2

2

=
1

2
(t22 − 2t2)− 1,

f ∆1∆2
t1t2 (2, t2) =

1

2
(σ2(t2) + t2 − 2)

=
1

2
(2t2 − 2)

= t2 − 1,

f ∆2
t2 (2, t2) = 2,
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Example

f ∆2
t2 (4, t2) = 2t2,

f ∆2∆1
t2t1 (2, t2) =

f ∆2
t2 (4, t2)− f ∆2

t2 (2, t2)

2

=
2t2 − 2

2
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Example

= t2 − 1, t2 ∈ [0, 2].

Therefore,
f ∆1∆2
t1t2 (2, t2) = f ∆2∆1

t2t1 (2, t2), t2 ∈ [0, 2].
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