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Let T be a time scale with forward jump operator σ and delta operator ∆.
Let x0 ∈ T, w = (w1,w2, . . . ,wn) ∈ Rn be a unit vector, and
t0 = (t01 , t

0
2 , . . . , t

0
n) be a fixed point in Rn. We set

Ti = {ti = t0i + (ξ − x0)wi : ξ ∈ T}, i ∈ {1, 2, . . . , n}.

We note that Ti , i ∈ {1, 2, . . . , n}, are time scales and t0i ∈ Ti ,
i ∈ {1, 2, . . . , n}. Denote the forward jump operator of Ti by σi and the
delta operator by ∆i .
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Definition

Let a function f : T1 × T2 × · · · × Tn → R be given. The directional delta
derivative of the function f at the point t0 in the direction of the vector w
is defined as the number

F∆(x0) =
∂f (t0)

∆w
.
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Remark

If f is σi -completely delta differentiable at t0, then, using Theorem ??, we
have

F∆(x0) = f ∆i
ti (t0)wi

+f
∆i−1
ti−1

(t01 , . . . , t
0
i−1, σi (t

0
i ), t

0
i+1, . . . , t

0
n)wi−1

+ · · ·

+f ∆1
t1 (t01 , σ2(t

0
2 ), . . . , σi (t

0
i ), t

0
i+1, . . . , t

0
n)w1
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Remark

+f
∆i+1
ti+1

(σ1(t
0
1 ), . . . , σi (t

0
i ), t

0
i+1, . . . , t

0
n)wi+1

+ · · ·

+f ∆n
tn (σ1(t

0
1 ), . . . , σn−1(t

0
n−1), t

0
n)wn.
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Example

Let T = N, x0 = 1, w = (1, 0) ∈ R2. We note that w is a unit vector in
R2. Let t0 = (1, 1). We set

T1 = {t1 = 1 + (ξ − 1)1 : ξ ∈ T} = N,

T2 = {t2 = 1 + (ξ − 1)0 : ξ ∈ T} = {1}.
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Example

We consider f (t) = t21 + t22 , t ∈ T1 × T2. We have that f is σ1-completely
delta differentiable in T1 × T2 and

F∆(1) =
∂f

∆w
(1, 1)

= f ∆1
t1 (1, 1)1

= (σ1(t1) + t1)
∣∣∣
t1=1

= (2t1 + 1)
∣∣∣
t1=1

= 3.
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Example

Let T = Z, x0 = 0, w =
(

2√
13
, 3√

13

)
∈ R2. We note that w is a unit

vector in R2. Let t0 = (t01 , t
0
2 ) = (0, 0) be a fixed point in R2. We set

T1 =

{
t1 =

2√
13
ξ : ξ ∈ Z

}
=

2√
13

Z,

T2 =

{
t2 =

3√
13
ξ : ξ ∈ Z

}
=

3√
13

Z

so that
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Example

σ1(t1) = t1 +
2√
13
, t1 ∈ T1, σ2(t2) = t2 +

3√
13
, t2 ∈ T2.

We consider

f (t) = t31 + 3t21 t2 + t22 , t = (t1, t2) ∈ T1 × T2.

We note that f is σ1-completely delta differentiable in T1 × T2. Hence,

∂f (0, 0)

∆w
= f ∆1

t1 (0, 0)
2√
13

+ f ∆2
t2 (σ1(0), 0)

3√
13
,
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Example

f ∆1
t1 (t) = (σ1(t1))

2 + t1σ1(t1) + t21

+3(σ1(t1) + t1)t2

=

(
t1 +

2√
13

)2

+ t1

(
t1 +

2√
13

)
+ t21

+3

(
2t1 +

2√
13

)
t2,
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Example

f ∆1
t1 (0) =

(
2√
13

)2

= i
4

13
,

f ∆2
t2 (t) = 3t21 + σ2(t2) + t2

= 3t21 + 2t2 +
3√
13
,
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Example

f ∆2
t2 (σ1(0), 0) = f ∆2

t2

(
2√
13
, 0

)

= 3

(
2√
13

)2

+
3√
13

=
12

13
+

3√
13
.

Hence,
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Example

∂f (0, 0)

∆w
=

4

13
· 2√

13
+

3√
13

(
12

13
+

3√
13

)
=

8

13
√
13

+
36

13
√
13

+
9

13

=
44

13
√
13

+
9

13
.
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Example

Let T = Z, x0 = 0, w =
(
− 1√

3
, 2√

3

)
∈ R2. We note that w is a unit

vector in R2. Let t0 = (0, 0). We set

T1 =

{
t1 = − ξ√

3
: ξ ∈ T

}
= − 1√

3
Z,

T2 =

{
t2 =

2ξ√
3
: ξ ∈ T

}
=

2√
3
Z.
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Example

We consider
f (t) = t21 + 2t1t2, t ∈ T1 × T2.

We have that f is σ1-completely delta differentiable in T1 × T2 and

σ1(t1) = t1 +
1√
3
, t1 ∈ T1, σ2(t2) = t2 +

2√
3
, t2 ∈ T2.

Hence,

Svetlin G. Georgiev Time Scales Analysis Lecture 27 December 10, 2025 15 / 59



Example

∂f (0, 0)

∆w
= f ∆1

t1 (0, 0)

(
− 1√

3

)
+ f ∆2

t2 (σ1(0), 0)
2√
3
,

f ∆1
t1 (t) = σ1(t1) + t1 + 2t2

= 2t1 +
1√
3
+ 2t2,
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Example

f ∆1
t1 (0, 0) =

1√
3
,

f ∆2
t2 (t) = 2t1,

f ∆2
t2 (σ1(0), 0) = f ∆2

t2

(
1√
3
, 0

)
=

2√
3
,
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Example

∂f (0, 0)

∆w
=

1√
3

(
− 1√

3

)
+

2√
3
· 2√

3

= −1

3
+

4

3

= 1.
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Let Ti , 1 ≤ i ≤ n − 1, be time scales. We consider the equation

f (t1, t2, . . . , tn−1, x) = 0 (1)

for (t1, t2, . . . , tn−1, x) ∈ T1 × T2 × Tn−1 × R.

Theorem

Suppose an equation (1) satisfies the following conditions.
i The function f is defined in a neighbourhood U of the point
(t01 , t

0
2 , . . . , t

0
n−1, x) ∈ Tκ

1 × Tκ
2 × · · · × Tk

n−1 × R and is continuous in U

together with its partial derivatives f ∆i
ti (t1, t2, . . . , tn−1, x),

i ∈ {1, . . . , n − 1}, and ∂f
∂x (t1, . . . , tn−1, x).
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Theorem

ii f (t01 , t
0
2 , . . . , t

0
n−1, x

0) = 0.

iii ∂f
∂x (t

0
1 , t

0
2 , . . . , t

0
n−1, x

0) ̸= 0. Then the following statements are true.
a There is a “rectangle”

N =
{
(t01 , t

0
2 , . . . , t

0
n−1, x) ∈ Tκ

1 × Tκ
2 × · · · × Tk

n−1 × R :

|ti − t0i | < δi , i = 1, 2, . . . , n − 1, |x − x0| < δ′
} (2)
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Theorem

belonging to U such that M∩N is described by a uniquely determined
single-valued function

x = ψ(t1, t2, . . . , tn−1) for (t01 , t
0
2 , . . . , t

0
n−1, x) ∈ N 0,

where
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Theorem

M =
{
(t1, t2, . . . , tn−1, x) ∈ T1 × T2 × . . .× Tn−1 × R :

f (t1, t2, . . . , tn−1, x) = 0
}
,

N 0 =
{
(t1, t2, . . . , tn−1) ∈ T1 × T2 × . . .× Tn−1 :

|ti − t0i | < δi , i = 1, 2, . . . , n − 1
}
.
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Theorem

b x0 = ψ(t01 , t
0
2 , . . . , t

0
n−1).

c The function ψ(t1, t2, . . . , tn−1) is continuous in N 0.
d The function ψ(t1, t2, . . . , tn−1) has partial delta derivatives

ψ∆i
ti (t1, t2, . . . , tn−1), i = 1, 2, . . . , n − 1 on N 0.
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Proof.

a Without loss of generality, we can suppose that U is an open “rectangle”
of the form

U =
{
(t1, t2, . . . , tn−1, x) ∈ T1 × T2 × . . .× Tn−1 × R :

|ti − t0i | < ãi , i = 1, 2, . . . , n − 1, |x − x0| < b
}
,

and we can assume that

∂

∂x
f (t01 , t

0
2 , . . . , t

0
n−1, x) > 0.

Because ∂
∂x f (t1, t2, . . . , tn−1, x) is continuous on U, we also have
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Proof.

∂

∂x
f (t1, t2, . . . , tn−1, x) > 0 (3)

in a small neighbourhood U1 ⊂ U of the point (t01 , t
0
2 , . . . , t

0
n−1, x

0) and

U1 =
{
(t1, t2, . . . , tn−1, x) ∈ T1 × T2 × . . .× Tn−1 × R :

|ti − t0i | < ai , i = 1, 2, . . . , n − 1, |x − x0| < b1
}
.
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Proof.

Since f is continuous in U, we have that f is continuous in U1. Also, the
function f (t01 , t

0
2 , . . . , t

0
n−1, x) of the single variable x is continuous on the

closed interval [x0 − b1, x
0 + b1]. Hence, using (3), we have that

f (t01 , t
0
2 , . . . , t

0
n−1, x) is strongly increasing in [x0 − b1, x

0 + b1] and

f (t01 , t
0
2 , . . . , t

0
n−1, x

0) = 0.

Therefore,

f (t01 , t
0
2 , . . . , t

0
n−1, x0−b1) < 0 and f (t01 , t

0
2 , . . . , t

0
n−1, x

0+b1) > 0. (4)

Svetlin G. Georgiev Time Scales Analysis Lecture 27 December 10, 2025 26 / 59



Proof.

By the continuity of f , there is a sufficiently small number δ > 0 with
δ < min{a1, a2, . . . , an−1} such that (4) holds for all

(t1, t2, . . . , tn−1) ∈ N 0 =
{
(t1, t2, . . . , tn−1) ∈ T1 × T2 × . . .× Tn−1 :

|ti − t0i | < δ, i = 1, 2, . . . , n − 1
}
.

Now, we choose an arbitrary (t1, t2, . . . , tn−1) ∈ N 0, fix it temporarily, and
consider the function f (t1, t2, . . . , tn−1, x) on the real variable x in the
interval [x0 − b1, x

0 + b1] ⊂ R.
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Proof.

This function is continuous, strictly increasing, and assumes values of the
opposite signs at the end points of this interval. Therefore, there is a
single value x ∈ (x0 − b1, x

0 + b1), denoted by

x = ψ(t1, t2, . . . , tn−1),

for which
f (t1, t2, . . . , tn−1, ψ(t1, t2, . . . , tn−1)) = 0.

Thus, letting δ′ = b1, δi = δ, we see that in the neighbourhood N of the
point

(t01 , t
0
2 , . . . , t

0
n−1, x

0),

defined by (2), (1) determines x as a unique function of
t1, t2, . . . , tn−1:
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Proof.

x = ψ(t1, t2, . . . , tn−1).

b From the condition ii, it follows that

x0 = ψ(t01 , t
0
2 , . . . , t

0
n−1).

c We will show that the function ψ is a continuous function in N 0. To do
so, it is enough to prove that it is continuous at the point
(t01 , t

0
2 , . . . , t

0
n−1). Let ε

′ ∈ (0, δ′) be arbitrarily chosen. There exists
ε ∈ (0, δ) such that for the rectangle
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Proof.

N∗ =
{
(t1, t2, . . . , tn−1, x) ∈ T1 × T2 × . . .× Tn−1 × R :

|ti − t0i | < ε, i = 1, 2, . . . , n − 1, |x − x0| < ε′
}
,

there exists a function x = ψ∗(t1, t2, . . . , tn−1) for

(t1, t2, . . . , tn−1) ∈ N ∗
∗ =

{
(t1, t2, . . . , tn−1) ∈ T1 × T2 × . . .× Tn−1 :

|ti − t0i | < ε, i = 1, 2, . . . , n − 1
}
,
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Proof.

which describes the set M∩N∗. Since N∗ ⊂ N , we have that

ψ(t1, t2, . . . , tn−1) = ψ∗(t1, t2, . . . , tn−1)

for (t1, t2, . . . , tn−1) ∈ N ∗
∗ . Hence, for any sufficiently small ε′ > 0, there

exists ε > 0 such that

|ψ(t1, t2, . . . , tn−1)− ψ(t01 , t
0
2 , . . . , t

0
n−1)| < ε′

provided that |ti − t0i | < ε, i ∈ {1, 2, . . . , n − 1}, i.e., the function ψ is
continuous at the point (t01 , t

0
2 , . . . , t

0
n−1).
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Proof.

d We take (t1, t2, . . . , tn−1) ∈ N 0. Let i ∈ {1, 2, . . . , n − 1} be arbitrarily
chosen.
First case. σi (ti ) > ti . Since the function ψ is continuous at
(t1, t2, . . . , tn−1), it has a partial delta derivative ψ∆i

ti (t1, t2, . . . , tn−1) with

ψ∆i
ti (t1, t2, . . . , tn−1) =

ψσi
i (t)− ψ(t)

σi (ti )− ti
.
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Proof.

Second case. ti = σi (ti ). Let

(t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn) ∈ N 0, t ′i ̸= ti .

We have that

f (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn)) = 0,

f (t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn)) = 0.
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Proof.

Thus,

f (t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

− f (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

= f (t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

(5)
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Proof.

− f (t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1))

=
∂f

∂x
(t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1, θ)

×
(
ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1)− ψ(t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1)

)
,

where θ is a real number between
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Proof.

ψ(t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1) and ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1).

Also, by the mean value theorem for delta derivatives, we have

f ∆i
ti (t1, t2, . . . , ti−1, ξ

′, ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

×(t ′i − ti )

≤ f (t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))
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Proof.

−f (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

≤ f ∆i
ti (t1, t2, . . . , ti−1, ξ

′′, ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

×(t ′i − ti ).

Hence, using (5), we get

f ∆i
ti (t1, t2, . . . , ti−1, ξ

′, ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

×(t ′i − ti )
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Proof.

≤ ∂

∂x
f (t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1, θ)

×
(
ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1)− ψ(t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1)

)
≤ f ∆i

ti (t1, t2, . . . , ti−1, ξ
′′, ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

×(t ′i − ti ).
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Proof.

Dividing the last inequality by

∂

∂x
f (t1, t2, . . . , ti−1, t

′
i , ti+1, . . . , tn−1, θ)(ti − t ′i )

and using (3) and the continuity of f ∆i
ti and ∂f

∂x , we see that

ψ∆i
ti (t1, t2, . . . , tn−1)

= lim
t′i→ti

ψ(t1, t2, . . . , ti−1, t
′
i , ti+1, . . . , tn−1)− ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1)

t ′i − ti
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Proof.

= −
f ∆i
ti (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))
∂f
∂x (t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1, ψ(t1, t2, . . . , ti−1, ti , ti+1, . . . , tn−1))

.

The proof is complete.
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Let Ti , i ∈ {1, 2, . . . , n}, be time scales. For i ∈ {1, 2, . . . , n}, let σi , ρi ,
and ∆i denote the forward jump operator, the backward jump operator,
and the delta differentiation, respectively, on Ti . Suppose ai < bi are
points in Ti and [ai , bi ) is the half-closed bounded interval in Ti ,
i ∈ {1, . . . , n}. Let us introduce a “rectangle” in Λn = T1 × T2 × . . .× Tn

by
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R = [a1, b1)× [a2, b2)× . . . [an, bn)

= {(t1, t2, . . . , tn) : ti ∈ [ai , bi ), i = 1, 2, . . . , n} .

Let
ai = t0i < t1i < . . . < tkii = bi .
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Definition

We call the collection of intervals

Pi =
{
[t ji−1
i , t jii ) : ji = 1, . . . , ki

}
, i = 1, 2, . . . , n,

a ∆i -partition of [ai , bi ) and denote the set of all ∆i -partitions of [ai , bi )
by Pi ([ai , bi )).
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Definition

Let
Rj1j2...jn = [t j1−1

1 , t j11 )× [t j2−1
2 , t j22 )× . . .× [t jn−1

n , t jnn )

1 ≤ ji ≤ ki , i = 1, 2, . . . , n.

(6)

We call the collection

P = {Rj1j2...jn : 1 ≤ ji ≤ ki , i = 1, 2, . . . , n} (7)

a ∆-partition of R,
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Definition

generated by the ∆i -partitions Pi of [ai , bi ), and we write

P = P1 × P2 × . . .× Pn.

The set of all ∆-partitions of R is denoted by P(R). Moreover, for a
bounded function f : R → R, we set

M = sup{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ R},

m = inf{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ R},
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Definition

Mj1j2...jn = sup{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ Rj1j2...jn},

mj1j2...jn = inf{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ Rj1j2...jn}.
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Definition

The upper Darboux ∆-sum U(f ,P) and the lower Darboux ∆-sum L(f ,P)
with respect to P are defined by

U(f ,P) =

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

Mj1j2...jn(t
j1
1 − t j1−1

1 )(t j22 − t j2−1
2 ) . . . (t jnn − t jn−1

n )

and

L(f ,P) =

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

mj1j2...jn(t
j1
1 − t j1−1

1 )(t j22 − t j2−1
2 ) . . . (t jnn − t jn−1

n ).
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Remark

We note that

U(f ,P) ≤ M

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≤ M(b1 − a1)(b2 − a2) . . . (bn − an)

and

Svetlin G. Georgiev Time Scales Analysis Lecture 27 December 10, 2025 48 / 59



Remark

L(f ,P) ≥ m

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≥ M(b1 − a1)(b2 − a2) . . . (bn − an),

i.e.,

m(b1 − a1)(b2 − a2) . . . (bn − an) ≤L(f ,P)

≤U(f ,P)

≤M(b1 − a1)(b2 − a2) . . . (bn − an).
(8)
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Definition

The upper Darboux ∆-integral U(f ) of f over R and the lower Darboux
∆-integral L(f ) of f over R are defined by

U(f ) = inf{U(f ,P) : P ∈ P(R)} and L(f ) = sup{L(f ,P) : P ∈ P(R)}.
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From (8), it follows that U(f ) and L(f ) are finite real numbers.

Definition

We say that f is ∆-integrable over R provided L(f ) = U(f ). In this case,
we write ∫

R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

for this common value. We call this integral the Darboux ∆-integral.

Svetlin G. Georgiev Time Scales Analysis Lecture 27 December 10, 2025 51 / 59



Remark

For a given rectangle

V = [c1, d1)× [c2, d2)× . . .× [cn, dn) ⊂ Λn,

the “area” of V , i.e., (d1 − c1)(d2 − c2) . . . (dn − cn), is denoted by m(V ).
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Definition

Let P,Q ∈ P(R) and

P = P1 × P2 × . . .× Pn, Q = Q1 × Q2 × . . .× Qn,

where Pi ,Qi ∈ P([ai , bi )). We say that Q is a refinement of P provided
Qi is a refinement of Pi for all i ∈ {1, 2, . . . , n}.
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Theorem

Let f be a bounded function on R. If P and Q are ∆-partitions of R and
Q is a refinement of P, then

L(f ,P) ≤ L(f ,Q) ≤ U(f ,Q) ≤ U(f ,P),

i.e., refining of a partition increases the lower sum and decreases the upper
sum.
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Proof.

For every ∆-partition Q of R, we have

L(f ,Q) ≤ U(f ,Q).

Now, we prove

L(f ,P) ≤ L(f ,Q) and U(f ,Q) ≤ U(f ,P).

To this end, let
P = {R1,R2, . . . ,RN}.

Because Q is a refinement of P, there exists k ∈ {1, 2, . . . ,N} such
that
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Proof.

Q = {R1,R2, . . . ,Rk−1,R
′
k ,R

′′
k ,Rk+1, . . . ,RN},

where
Rk = R ′

k ∪ R ′′
k .

Define

mk = inf
(t1,t2,...,tn)∈Rk

f (t1, t2, . . . , tn),

m
(1)
k = inf

(t1,t2,...,tn)∈R′
k

f (t1, t2, . . . , tn),

m
(2)
k = inf

(t1,t2,...,tn)∈R′′
k

f (t1, t2, . . . , tn),
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Proof.

Mk = sup
(t1,t2,...,tn)∈Rk

f (t1, t2, . . . , tn),

M
(1)
k = sup

(t1,t2,...,tn)∈R′
k

f (t1, t2, . . . , tn),

M
(2)
k = sup

(t1,t2,...,tn)∈R′′
k

f (t1, t2, . . . , tn).

We note that
mk ≤ m

(1)
k , mk ≤ m

(2)
k

and
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Proof.

Mk ≥ M
(1)
k , Mk ≥ M

(2)
k .

Thus,

L(f ,Q)− L(f ,P) = m
(1)
k m(R ′

k) +m
(2)
k m(R ′′

k )−mkm(Rk)

≥ mkm(R ′
k) +mkm(R ′′

k )−mkm(Rk)

= 0

and
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Proof.

U(f ,P)− U(f ,Q) = Mkm(Rk)−M
(1)
k m(R ′

k)−M
(2)
k m(R ′′

k )

= Mkm(R ′
k) +Mkm(R ′′

k )−M
(1)
k m(R ′

k)−M
(2)
k m(R ′′

k )

≥ M
(1)
k m(R ′

k) +M
(2)
k m(R ′′

k )−M
(1)
k m(R ′

k)−M
(2)
k m(R ′′

k )

= 0,

which completes the proof.
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