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Definition

Suppose

P = P1 × P2 × . . .× Pn and Q = Q1 × Q2 × . . .× Qn,

where Pi ,Qi ∈ P([ai , bi )), i ∈ {1, 2, . . . , n}, are two ∆-partitions of

R = [a1, b1)× [a2, b2)× . . .× [an, bn).

If Pi is generated by a set
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Definition

{t0i , t1i , . . . , t
ki
i }, where ai = t0i < t1i < . . . < tkii = bi ,

and Qi is generated by a set

{τ0i , τ2i , . . . , τ
pi
i }, where ai = τ0i < τ1i < . . . < τpii = bi ,

then, by
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Definition

P + Q = (P1 + Q1)× (P2 + Q2)× . . .× (Pn + Qn),

we denote the ∆-partition of R generated by

Pi + Qi = {t0i , t1i , . . . , t
ki
i } ∪ {τ0i , τ1i , . . . , τ

pi
i }, i = 1, 2, . . . , n.

Remark

Obviously, P + Q is a refinement of both P and Q.
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Theorem

If f is a bounded function on R and if P and Q are any two ∆-partitions
of R, then

L(f ,P) ≤ U(f ,Q),

i.e., every lower sum is less than or equal to every upper sum.
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Proof.

Since P +Q is a ∆-partition of R, which is a refinement of both P and Q,
applying Theorem ??, we get

L(f ,P) ≤ L(f ,P + Q) ≤ U(f ,P + Q) ≤ U(f ,Q),

i.e., L(f ,P) ≤ U(f ,Q).
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Theorem

If f is a bounded function on R, then L(f ) ≤ U(f ).

Proof.

Let P ∈ P(R). Then

L(f ,P) ≤ U(f ,Q) for all Q ∈ P(R).

Hence,
L(f ,P) ≤ inf

Q∈P(R)
U(f ,Q) = U(f ).

Because P ∈ P(R) was arbitrarily chosen, we conclude that

sup
P∈P(R)

L(f ,P) ≤ U(f ),

i.e.,
L(f ) ≤ U(f ),

completing the proof.
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Theorem

If L(f ,P) = U(f ,P) for some P ∈ P(R), then the function f is
∆-integrable over R and∫

R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = L(f ,P) = U(f ,P).

Proof.

The result follows from the inequality

L(f ,P) ≤ L(f ) ≤ U(f ) ≤ U(f ,P).
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Theorem

A bounded function f on R is ∆-integrable if and only if for each ε > 0,
there exists P ∈ P(R) such that

U(f ,P)− L(f ,P) < ε. (1)

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 9 / 120



Proof.

Let f be ∆-integrable on R. Then

L(f ) = U(f ).

Using the definitions of L(f ) and U(f ), it follows that there exist
P,Q ∈ P(R) such that

L(f ,P) > L(f )− ε

2
and U(f ,P) < U(f ) +

ε

2
.

Let S = P + Q, which is a refinement of both P and Q. Thus, employing
Theorem ??, we find

U(f , S) ≤ U(f ,Q) and L(f , S) ≥ L(f ,P)

and
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Proof.

U(f , S)− L(f , S) ≤ U(f ,Q)− L(f ,P)

< −L(f ) +
ε

2
+ U(f ) +

ε

2

= ε.

Conversely, suppose that for every ε > 0, the inequality (1) holds for some
P ∈ P(R). Therefore,
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Proof.

U(f ) ≤ U(f ,P)

= U(f ,P)− L(f ,P) + L(f ,P)

< ε+ L(f ,P)

≤ ε+ L(f ).
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Proof.

Since ε > 0 was arbitrarily chosen, we get

U(f ) ≤ L(f ).

From the last inequality and from Theorem 5, we conclude that
U(f ) = L(f ), i.e., f is ∆-integrable on R. The proof is complete.
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Remark

Let T be a time scale with forward jump operator σ. We note that for
every δ > 0, there exists at least one partition P1 ∈ P([a, b]) generated by
a set

{t0, t1, t2, . . . , tn} ⊂ [a, b], where a = t0 < t1 < . . . < tn = b,

such that for each i ∈ {1, 2, . . . , n} either

ti − ti−1 < δ

or
ti − ti−1 > δ and σ(ti−1) = ti .
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Definition

We denote by Pδ([a, b)) the set of all P1 ∈ P([a, b)) that possess the
property indicated in Remark 0.2. Further, by Pδ(R), we denote the set of
all P ∈ P(R) such that

P = P1 × P2 × . . .× Pn, where Pi ∈ Pδ([ai , bi )), i = 1, 2, . . . , n.
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Theorem

Let P0 ∈ P(R) be given by

P0 = P0
1 × P0

2 × . . .× P0
n

in which P0
i ∈ P([ai , bi )), i ∈ {1, 2, . . . , n}, is generated by a set

A0
i = {t0i0 , t

0
i1 , . . . , t

0
ini
} ⊂ [ai , bi ], where ai = t0i0 < t0i1 < . . . < t0ini

= bi .

Then, for each P ∈ Pδ(R), we have

L(f ,P0 + P)− L(f ,P) ≤ (M −m)Dn−1(n1 + n2 + . . .+ nn − n)δ

and

U(f ,P)− U(f ,P + P0) ≤ (M −m)Dn−1(n1 + n2 + . . .+ nn − n)δ,

where D = maxi∈{1,2,...,n}{bi − ai}, and M and m are defined as above.
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Proof.

Suppose the partition P is given by

P = P1 × P2 × . . .× Pn

in which Pi ∈ Pδ([ai , bi )) is generated by a set

Ai = {t i0, t i1, . . . , t ipi} ⊂ [ai , bi ],

where
ai = t i0 < t i1 < . . . < t ipi = bi , i = 1, 2, . . . , n.

Let Q = P0 + P = Q1 × Q2 × . . .× Qn, where Qi ∈ P([ai , bi )),
i = 1, 2, . . . , n, are generated by the sets
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Proof.

Bi = A0
i + Ai .

We suppose that there exists i ∈ {1, 2, . . . , n} such that Bi has one more
point, say t ′, than Ai and Bl = Al , l ̸= i , l ∈ {1, 2, . . . , n}. Then
t ′ ∈ (t iki−1, t

i
ki
) for some ki ∈ {1, 2, . . . , pi}, where t iki − t iki−1 ≤ δ. If

t iki − t iki−1 ≥ δ, then, using

Pi ∈ Pδ([ai , bi )),

we have σ(t iki−1) = t iki and (t iki−1, t
i
ki
) = ∅.
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Proof.

Now, denoting by mk1k2...kn , m
(1)
k1k2...kn

, and m
(2)
k1k2...kn

the infimum of f on

Rk1k2...kn = [tk1−1, tk1)× [tk2−1, tk2)× . . .× [tkn−1, tkn),

R
(1)
k1k2...kn

= [tk1−1, tk1)× . . .× [tki−1−1, tki−1
)× [tki−1, t

′)× [tki+1−1, tki+1
)
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Proof.

× . . .× [tkn−1, tkn),

R
(2)
k1k2...kn

= [tk1−1, tk1)× . . .× [tki−1−1, tki−1
)× [t ′, tki )× [tki+1−1, tki+1

)

× . . .× [tkn−1, tkn),

respectively, we have
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Proof.

m
(1)
k1k2...kn

≥ mk1k2...kn ,

m
(2)
k1k2...kn

≥ mk1k2...kn ,

m
(1)
k1k2...kn

−mk1k2...kn ≤ M −m,

m
(2)
k1k2...kn

−mk1k2...kn ≤ M −m,

and

m(Rk1k2...kn) = m(R
(1)
k1k2...kn

) +m(R
(2)
k1k2...kn

),
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Proof.

so that

L(f ,Q)− L(f ,P)

=

p1∑
jk1=1

p2∑
jk2=1

. . .

pi−1∑
jki−1

=1

pi+1∑
jki+1

=1

. . .

pn∑
jkn=1

(
m

(1)
jk1 jk2 ...jkn

m(R
(1)
jk1 jk2 ...jkn

)

+m
(2)
jk1 jk2 ...jkn

m(R
(2)
jk1 jk2 ...jkn

)−mjk1 jk2 ...jkn
m(Rjk1 jk2 ...jkn

)
)
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Proof.

=

p1∑
jk1=1

p2∑
jk2=1

. . .

pi−1∑
jki−1

=1

pi+1∑
jki+1

=1

. . .

pn∑
jkn=1

(
(m

(1)
jk1 jk2 ...jkn

−mjk1 jk2 ...jkn
)

×m(R
(1)
jk1 jk2 ...jkn

) + (m
(2)
jk1 jk2 ...jkn

−mjk1 jk2 ...jkn
)m(R

(2)
jk1 jk2 ...jkn

)
)
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Proof.

≤ (M −m)

p1∑
jk1=1

p2∑
jk2=1

. . .

pi−1∑
jki−1

=1

pi+1∑
jki+1

=1

. . .

pn∑
jkn=1

(
m(R

(1)
jk1 jk2 ...jkn

)

+m(R
(2)
jk1 jk2 ...jkn

)
)

= (M −m)(tki − tki−1)
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Proof.

×
p1∑

jk1=1

p2∑
jk2=1

. . .

pi−1∑
jki−1

=1

pi+1∑
jki+1

. . .

pn∑
jkn=1

(tjk1 − tjk1−1
)(tjk2 − tjk2−1

) . . . (tjkn − tjkn−1
)

≤ (M −m)Dn−1δ.

Since Bi has at most ni − 1 points that are not in Ai , an induction
argument shows that

L(f ,Q)− L(f ,P) ≤ (M −m)(n1 + n2 + · · ·+ nn − n)Dn−1δ.

The proof of the other inequality is similar.
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Theorem

A bounded function f on R is ∆-integrable if and only if for each ε > 0,
there exists δ > 0 such that

P ∈ Pδ(R) implies U(f ,P)− L(f ,P) < ε. (2)
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Proof.

Suppose that for each ε > 0, there exists δ > 0 such that (2) holds.
Because P ∈ P(R), we have that (1) holds. Hence, using Theorem 7, we
conclude that f is ∆-integrable on R.
Suppose that f is ∆-integrable over R. Let ε > 0 be arbitrarily chosen.
Hence, by Theorem 7, it follows that there exists P0 ∈ P(R) such that

U(f ,P0)− L(f ,P0) <
ε

2
.
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Proof.

Let D be as in Theorem 9 and P0 be determined as in Theorem 9. We
choose

δ =
ε

4(M −m)Dn−1(n1 + n2 + . . .+ nn − n)
.

Then, using Theorem 9, for each P ∈ Pδ(R), we have

L(f ,P0 + P)− L(f ,P) ≤ (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ

=
ε

4
,

U(f ,P)− U(f ,P0 + P) ≤ (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ

=
ε

4
.
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Proof.

Using this and

L(f ,P0) ≤ L(f ,P0 + P) and U(f ,P0 + P) ≤ U(f ,P0),

we obtain

L(f ,P0)− L(f ,P) ≤ ε

4
and U(f ,P)− U(f ,P0) ≤ ε

4
,

i.e.,

−L(f ,P) ≤ ε

4
− L(f ,P0) and U(f ,P) ≤ ε

4
+ U(f ,P0).

Therefore,
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Proof.

U(f ,P)− L(f ,P) ≤ ε

4
− L(f ,P0) +

ε

4
+ U(f ,P0)

=
ε

2
+ U(f ,P0)− L(f ,P0)

<
ε

2
+

ε

2

= ε.

Thus, we have verified (2).
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Theorem

For every bounded function f on R, the Darboux ∆-sums L(f ,P) and
U(f ,P) evaluated for P ∈ Pδ(R) have limits as δ → 0, uniformly with
respect to P, and

lim
δ→0

L(f ,P) = L(f ) and lim
δ→0

U(f ,P) = U(f ).
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Proof.

We fix ε > 0 and choose a partition P0 ∈ P(R) so that

L(f )− L(f ,P0) < ε and U(f ,P0)− U(f ) < ε.

Let P0 be described as in Theorem 9. Then, for any P ∈ Pδ(R), using
Theorem 9, we have

L(f ,P0 + P)− L(f ,P) ≤ (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ

and

U(f ,P)− U(f ,P0 + P) ≤ (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ.

We take

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 32 / 120



Proof.

δ =
ε

(M −m)Dn−1(n1 + n2 + · · ·+ nn − n)
.

Because P0 + P is a refinement of P0, we have

L(f ,P0) ≤ L(f ,P0 + P) and U(f ,P0 + P) ≤ U(f ,P0).

Thus,

L(f )− ε < L(f ,P0) ≤ L(f ,P0 + P)

≤ L(f ),

U(f ) ≤ U(f ,P0 + P)
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Proof.

≤ U(f ,P0)

< ε+ U(f ).

Hence,

L(f ,P0 + P)− L(f ,P0) < ε and U(f ,P0)− U(f ,P0 + P) < ε.

Therefore,

|L(f )− L(f ,P)| = |L(f )− L(f ,P0) + L(f ,P0)− L(f ,P0 + P)

+L(f ,P0 + P)− L(f ,P)|
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Proof.

≤ |L(f )− L(f ,P0)|+ |L(f ,P0)− L(f ,P0 + P)|

+|L(f ,P + P0)− L(f ,P)|

< ε+ ε+ (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ

≤ ε+ ε+ ε

= 3ε

and
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Proof.

|U(f ,P)− U(f )| = |U(f ,P)− U(f ,P + P0) + U(f ,P + P0)− U(f ,P0)

+U(f ,P0)− U(f )|

≤ |U(f ,P)− U(f ,P + P0)|+ |U(f ,P + P0)− U(f ,P0)|

+|U(f ,P0)− U(f )|

< (M −m)Dn−1(n1 + n2 + · · ·+ nn − n)δ + ε+ ε

≤ ε+ ε+ ε

= 3ε,
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Definition

Let f be a bounded function on R and P ∈ P(R). In each “rectangle”
Rj1j2...jn , 1 ≤ ji ≤ ki , i = 1, 2, . . . , n, choose a point ξj1j2...jn and form the
sum

S =
n∑

i=1

ki∑
ji=1

f (ξj1j2...jn)(t
ji
1 − t ji−1

1 ) . . . (t jnn − t jn−1
n ). (3)

We call S a Riemann ∆-sum of f corresponding to P ∈ P(R).
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Definition

We say that f is Riemann ∆-integrable over R if there exists a number I
such that, for each ε > 0, there exists δ > 0 such that

|S − I | < ε

for every Riemann ∆-sum S of f corresponding to any P ∈ Pδ(R),
independent of the choice of the point ξj1j2...jn ∈ Rj1j2...jn for 1 ≤ ji ≤ ki ,
i = 1, 2, . . . , n.
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Definition

The number I is called the Riemann ∆-integral of f over R.
We write

I = lim
δ→0

S .
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Theorem

The Riemann ∆-integral is well defined.

Proof.

Suppose that f is Riemann ∆-integrable over R and there are two
numbers I1 and I2 such that for every ε > 0, there exists δ > 0 so that

|S − I1| <
ε

2
and |S − I2| <

ε

2

for every Riemann ∆-sum S of f corresponding to any P ∈ Pδ(R),
independent of the way in which ξj1j2...jn ∈ Rj1j2...jn for 1 ≤ ji ≤ ki ,
i = 1, 2, . . . , n, is chosen. Therefore,
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Proof.

|I1 − I2| = |I1 − S + S − I2|

≤ |S − I1|+ |S − I2|

<
ε

2
+

ε

2

= ε.

Consequently, I1 = I2.
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Remark

Note that in the Riemann definition of the integral, we need not assume
the boundedness of f in advance. However, it follows that the Riemann
integrability of a function f over R implies its boundedness on R.

Theorem

A bounded function on R is Riemann ∆-integrable if and only if it is
Darboux ∆-integrable, in which case the value of the integrals are equal.
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Proof.

Suppose that f is Darboux ∆-integrable over R in the sense of Definition
??. Let ε > 0 and δ > 0 be chosen so that (1) of Theorem 7 holds. Using
the definition of S , we have

L(f ,P) ≤ S ≤ U(f ,P).

Also,

U(f ,P) < L(f ,P) + ε

≤ L(f ) + ε

=

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn + ε,
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Proof.

L(f ,P) > U(f ,P)− ε

≥ U(f )− ε

=

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn − ε.

Hence,

S −
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn ≤ U(f ,P)
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Proof.

−
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

<

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn + ε

−
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

= ε

and

S −
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn ≥ L(f ,P)
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Proof.

−
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

>

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn − ε

−
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

= −ε.

Consequently,∣∣∣∣S −
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

∣∣∣∣ < ε.
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Proof.

Now, we suppose that f is Riemann ∆-integrable in the sense of Definition
12. Select P ∈ Pδ(R) of the type (??) and (??). For each
i ∈ {1, 2, . . . , n} and 1 ≤ ji ≤ ki , we choose ξj1j2...jn ∈ Rj1j2...jn so that

Mj1j2...jn − ε < f (ξj1j2...jn) < mj1j2...jn + ε.

The Riemann ∆-sum S for this choice of the points ξj1j2...jn satisfies

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 47 / 120



Proof.

U(f ,P)− ε

n∏
i=1

(bi − ai ) < S < L(f ,P) + ε

n∏
i=1

(bi − ai )

as well as
−ε < S − I < ε.

Thus,

L(f ) ≥ L(f ,P)

> S − ε
n∏

i=1

(bi − ai )

> I − ε− ε

n∏
i=1

(bi − ai )

and
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Proof.

U(f ) ≤ U(f ,P)

< S + ε

n∏
i=1

(bi − ai )

< I + ε+ ε

n∏
i=1

(bi − ai ).

Since ε > 0 was arbitrarily chosen, we conclude that

L(f ) ≥ I and U(f ) ≤ I ,

i.e.,
I ≤ L(f ) ≤ U(f ) ≤ I .

This completes the proof.
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Remark

In the definition of∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

with R = [a1, b1)× . . .× [an, bn), we assumed that ai < bi , i ∈ {1, . . . , n}.
We extend the definition to the case ai = bi for some i ∈ {1, 2, . . . , n} by
setting ∫

R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = 0 (4)

if ai = bi for some i ∈ {1, . . . , n}.
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Theorem

Let a = (a1, . . . , an) ∈ Λn and b = (b1, . . . , bn) ∈ Λn with ai ≤ bi for all
i ∈ {1, . . . , n}. Every constant function

f (t1, t2, . . . , tn) = A for (t1, t2, . . . , tn) ∈ R = [a1, b1)× . . .× [an, bn)

is ∆-integrable over R and∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = A

n∏
i=1

(bi − ai ). (5)
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Proof.

We assume that ai < bi for all i ∈ {1, . . . , n}. Consider a partition P of R
of the type (??) and (??). Since

Mj1j2...jn = mj1j2...jn = A for all 1 ≤ ji ≤ ki , i ∈ {1, . . . , n},

we have that

U(f ,P) = L(f ,P) = A
n∏

i=1

(bi − ai ).

Hence, using Theorem 7, it follows that f is ∆-integrable and (5) holds. If
ai = bi for some i ∈ {1, . . . , n}, then (5) follows by (4). Note that every
Riemann ∆-sum of f associated with P is also equal to
A
∏n

i=1(bi − ai ).
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Theorem

Let t0 = (t01 , . . . , t
0
n) ∈ Λn. Every function f : Λn → R is ∆-integrable over

R = R(t0) = [t01 , σ1(t
0
1 ))× . . .× [t0n , σn(t

0
n)),

and ∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn =

n∏
i=1

µi (t
0
i )f (t

0
1 , . . . , t

0
n). (6)
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Proof.

If µi (t
0
i ) = 0 for some i ∈ {1, . . . , n}, then (6) is obvious as both sides of

(6) are equal to zero in this case. If µi (t
0
i ) > 0 for all i ∈ {1, . . . , n}, then

a single partition P of R(t0) is

[t01 , σ1(t
0
1 ))× . . .× [t0n , σn(t

0
n)) = {(t01 , . . . , t0n)}.

Consequently, we have

U(f ,P) = L(f ,P) =
n∏

i=1

µi (t
0
i )f (t

0
1 , . . . , t

0
n).

Therefore, Theorem 7 shows that f is ∆-integrable over R(t0) and (6)
holds. Note that the Riemann ∆-sum associated with the above partition
is also equal to the right-hand side of (6).
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Theorem

Let a = (a1, a2, . . . , an) ∈ Λn and b = (b1, b2, . . . , bn) ∈ Λn with ai ≤ bi
for all i ∈ {1, 2, . . . , n}. If Ti = R for every i ∈ {1, 2, . . . , n}, then every
bounded function f on R = [a1, b1)× [a2, b2)× . . .× [an, bn) is
∆-integrable if and only if f is Riemann integrable on R in the classical
sense, and in this case∫

R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn =

∫
R
f (t1, t2, . . . , tn)dt1dt2 . . . dtn,

where the integral on the right-hand side is the ordinary Riemann integral.
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Proof.

Clearly, Definition ?? and Definition 12 of the ∆-integral coincide in the
case Ti = R, i ∈ {1, 2, . . . , n}, with the usual Darboux and Riemann
definitions of the integral, respectively. Note that the classical definitions
of Darboux’s and Riemann’s integral do not depend on whether the
rectangles of the partition are taken closed, half-closed, or open.
Moreover, if Ti = R, i ∈ {1, 2, . . . , n}, then Pδ(R) consists of all partitions
of R with norm (mesh) less than or equal to δ

√
n.
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Theorem

Let a = (a1, a2, . . . , an) ∈ Λn and b = (b1, b2, . . . , bn) ∈ Λn with ai ≤ bi
for all i ∈ {1, 2, . . . , n}. If Ti = Z for all i ∈ {1, 2, . . . , n}, then every
function defined on R = [a1, b1)× [a2, b2)× . . .× [an, bn) is ∆-integrable
over R, and
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Theorem

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

=


0 if ai = bi for some i ∈ {1, 2, . . . , n}

∑b1−1
r1=a1

∑b2−1
r2=a2

. . .
∑bn−1

rn=an
f (r1, r2, . . . , rn) otherwise.

(7)
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Proof.

Let bi = ai + pi , pi ∈ N, i ∈ {1, 2, . . . , n}. Consider the partition P∗ of R
given by (??) and (??) with ki = pi , i ∈ {1, 2, . . . , n}, and

t0i = ai , t1i = ai + 1, . . . , tkii = ai + pi .

Thus, Rj1j2...jn contains the single point (t j1−1
1 , t j2−1

2 , . . . , t jn−1
n ). Therefore,

U(f ,P∗) = L(f ,P∗) =

b1−1∑
r1=a1

b2−1∑
r2=a2

. . .

bn−1∑
rn=an

f (r1, r2, . . . , rn).

Hence, Theorem 7 shows that f is ∆-integrable over R and (7) holds for
ai < bi , i ∈ {1, 2, . . . , n}. If ai = bi for some i ∈ {1, 2, . . . , n}, then the
relation (4) shows the validity of (7).
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Example

Let T1 = T2 = Z. We consider

I =

∫ 4

0

∫ 8

1
t2(2t1 + 1)∆1t1∆2t2.

Here,

f (t1, t2) = t2(2t1 + 1), (t1, t2) ∈ T1 × T2,

σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = t2 + 1, t2 ∈ T2.

We note that
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Example

(t2t
2
1 )

∆1
t1 = t2(t

2
1 )

∆1
t1

= t2(σ1(t1) + t1)

= t2(t1 + 1 + t1)

= t2(2t1 + 1).

Therefore,
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Example

∫ 8

1
t2(2t1 + 1)∆1t1 = t2t

2
1

∣∣∣t1=8

t1=1

= 64t2 − t2

= 63t2.

Hence,

I =

∫ 4

0
63t2∆2t2 = 63

∫ 4

0
t2∆2t2.

Since
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Example

1

2

(
(t22 )

∆2
t2 − 1

)
=

1

2
(σ2(t2) + t2 − 1)

=
1

2
(t2 + 1 + t2 − 1)

= t2,

we get
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Example

I = 63

∫ 4

0

1

2

(
(t22 )

∆2
t2 − 1

)
∆2t2

=
63

2

∫ 4

0
(t22 )

∆2
t2 ∆2t2 −

63

2

∫ 4

0
∆2t2

=
63

2
t22

∣∣∣t2=4

t2=0
−126

= 504− 126

= 378.
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Example

Let T1 = Z and T2 = 2N. We consider

I =
1

2
sin

1

2

∫ 3

0

∫ 8

2
t2 cos

(
t1 +

1

2

)
∆1t1∆2t2.

Here,

f (t1, t2) =
1

2
t2 cos

(
t1 +

1

2

)
sin

1

2
, (t1, t2) ∈ T1 × T2,

σ1(t1) = t1 + 1, t1 ∈ T1, σ2(t2) = 2t2, t2 ∈ T2.

Since
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Example

(sin t1)
∆1
t1 =

sinσ1(t1)− sin t1
σ1(t1)− t1

=
sin(t1 + 1)− sin t1

t1 + 1− t1

=
1

2
sin

1

2
cos

(
t1 +

1

2

)
,

we get
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Example

1

2
sin

1

2

∫ 8

2
t2 cos

(
t1 +

1

2

)
∆1t1 = t2

∫ 8

2
(sin t1)

∆1
t1 ∆1t1

= t2 sin t1

∣∣∣t1=8

t1=2

= t2(sin 8− sin 2)

= 2t2 sin 3 cos 5.

Therefore,
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Example

I = 2 sin 3 cos 5

∫ 3

0
t2∆2t2.

Because
(t22 )

∆2
t2 = σ2(t2) + t2 = 2t2 + t2 = 3t2,

we get

t2 =
1

3
(t22 )

∆2
t2 .

Consequently,
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Example

I = 2 sin 3 cos 5

∫ 3

0

1

3
(t22 )

∆2
t2 ∆2t2

=
2

3
sin 3 cos 5

∫ 3

0
(t22 )

∆2
t2 ∆2t2

=
2

3
sin 3 cos 5t22

∣∣∣t2=3

t2=0

= 6 sin 3 cos 5.
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Example

Let T1 = 3Z and T2 = 3N. We consider

I =

∫ 9

3

∫ 12

−3
(t1t2 + 2t1 + t2 + 3)∆1t1∆2t2.

Here,

f (t1, t2) = t1t2 + 2t1 + t2 + 3, (t1, t2) ∈ T1 × T2,

σ1(t1) = t1 + 3, t1 ∈ T1, σ2(t2) = 3t2, t2 ∈ T2.

We note that
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Example

(t21 )
∆1
t1 = σ1(t1) + t1 = 2t1 + 3,

whereupon

t1 =
(t21 )

∆1
t1 − 3

2
,

t1t2 + 2t1 + t2 + 3 =
(t21 )

∆1
t1 − 3

2
(t2 + 2) + t2 + 3,

and∫ 12

−3
f (t1, t2)∆1t1 =

∫ 12

−3

(
(t21 )

∆1
t1 − 3

2
(t2 + 2) + (t2 + 3)

)
∆1t1
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Example

=
t2 + 2

2

∫ 12

−3
(t21 )

∆1
t1 ∆1t1 +

∫ 12

−3

(
−3

2
(t2 + 2) + t2 + 3

)
∆1t1

=
t2 + 2

2
t21

∣∣∣t1=12

t1=−3
− t2

2

∫ 12

−3
∆1t1

=
t2 + 2

2
(144− 9)− 15

2
t2

=
135

2
(t2 + 2)− 15

2
t2

= 60t2 + 135.
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Example

Therefore,

I =

∫ 9

3
(60t2 + 135)∆2t2.

Since
(t22 )

∆2
t2 = σ2(t2) + t2 = 3t2 + t2 = 4t2,

we get

t2 =
1

4
(t22 )

∆2
t2 .

Consequently,
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Example

I =

∫ 9

3

(
60 · 1

4
(t22 )

∆2
t2 + 135

)
∆2t2

= 15

∫ 9

3
(t22 )

∆2
t2 ∆2t2 + 135

∫ 9

3
∆2t2

= 15t22

∣∣∣t2=9

t2=3
+135 · 6

= 15 · (81− 9) + 810

= 1890.
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Note that Λn is a complete metric space with the metric D defined by

d(t, s) =

√√√√ n∑
i=1

(ti − si )2 for t = (t1, t2, . . . , tn), s = (s1, s2, . . . , sn) ∈ Λn,

and also with the equivalent metric

d(t, s) = max
i∈{1,2,...,n}

{|ti − si |} .

Definition

A function f : Λn → R is said to be continuous at t ∈ Λn if for every
ε > 0, there exists δ > 0 such that

|f (t)− f (s)| < ε

for all points s ∈ Λn satisfying d(t, s) < δ.
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Remark

If t is an isolated point of Λn, then every function f : Λn → R is
continuous at t. In particular, if Ti = Z for all i ∈ {1, 2, . . . , n}, then every
function f : Λn → R is continuous at each point of Λn.

Theorem

Every continuous function on K = [a1, b1]× [a2, b2]× . . .× [an, bn] is
∆-integrable over R = [a1, b1)× [a2, b2)× . . .× [an, bn).
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Proof.

Let ε > 0 be arbitrarily chosen. Since f is continuous, it is uniformly
continuous on the compact subset K of Λn. Therefore, there exists δ > 0
such that

t = (t1, t2, . . . , tn), t ′ = (t ′1, t
′
2, . . . , t

′
n) ∈ R and maxi∈{1,2,...,n}{|ti − t ′i |} ≤ δ

implies |f (t)− f (t ′)| < ε
(2n−1)

∏n
i=1(bi−ai+1)

.

(8)
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Proof.

Consider P ∈ P(R) given by (??) and (??). Let

R̃j1j2...jn = [t j1−1
1 , σ1(t

j1−1
1 )]× [t j2−1

2 , σ2(t
j2−1
2 )]× . . .× [t jn−1

n , σn(t
jn−1
n )],

M̃j1j2...jn = sup{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ R̃j1j2...jn},

m̃j1j2...jn = inf{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ R̃j1j2...jn}.
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Proof.

Then, since Rj1j2...jn ⊂ R̃j1j2...jn , we have

m̃j1j2...jn ≤ mj1j2...jn ≤ Mj1j2...jn ≤ M̃j1j2...jn

for 1 ≤ ji ≤ ki , i = 1, 2, . . . , n. Therefore, taking into account that f
assumes its maximum and minimum on each compact rectangle R̃j1j2...jn ,
(8) shows
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Proof.

U(f ,P)− L(f ,P) =

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(Mj1j2...jn −mj1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≤
k1∑

j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(M̃j1j2...jn − m̃j1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )
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Proof.

=
∑

t
j1
1 −t

j1−1
1 ≤δ

∑
t
j2
2 −t

j2−1
2 ≤δ

. . .
∑

t jnn −t jn−1
n ≤δ

(M̃j1j2...jn − m̃j1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

+
∑

t
j1
1 −t

j1−1
1 ≤δ

∑
t
j2
2 −t

j2−1
2 ≤δ

. . .
∑

t jnn −t jn−1
n >δ

(M̃j1j2...jn − m̃j1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )
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Proof.

+ · · ·

+
∑

t
j1
1 −t

j1−1
1 >δ

∑
t
j2
2 −t

j2−1
2 >δ

. . .
∑

t jnn −t jn−1
n >δ

(M̃j1j2...jn − m̃j1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≤ ε(2n − 1)

(2n − 1)
∏n

i=1(bi − ai + 1)
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Proof.

×
k1∑

j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

=
ε
∏n

i=1(bi − ai )∏n
i=1(bi − ai + 1)

< ε.

Thus, U(f ,P)− L(f ,P) < ε. Hence, Theorem 7 yields that f is
∆-integrable.
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Definition

We say that a function ϕ : [α, β] → R satisfies the Lipschitz condition if
there exists a constant B > 0, a so-called Lipschitz constant, such that

|ϕ(u)− ϕ(v)| ≤ B|u − v | for all u, v ∈ [α, β].
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Example

Let ϕ : [0, 1] → R be defined by ϕ(x) = x2 + 1, x ∈ [0, 1]. Then, for
x , y ∈ [0, 1], we have

|ϕ(x)− ϕ(y)| = |x2 + 1− y2 − 1|

= |x2 − y2|

= |x − y ||x + y |

≤ |x − y |(|x |+ |y |)

≤ 2|x − y |,

i.e., ϕ satisfies the Lipschitz condition with Lipschitz constant B = 2.
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Example

Let ϕ : [0, π] → R be defined by ϕ(x) = sin x , x ∈ [0, π]. Then, for
x , y ∈ [0, π], we have

|ϕ(x)− ϕ(y)| = | sin x − sin y |

= 2

∣∣∣∣sin x − y

2
cos

x + y

2

∣∣∣∣
= 2

∣∣∣∣sin x − y

2

∣∣∣∣ ∣∣∣∣cos x + y

2

∣∣∣∣
≤ 2

|x − y |
2

= |x − y |,

i.e., ϕ satisfies the Lipschitz condition with constant B = 1.
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Example

Let ϕ : [0, 3] → R be defined by ϕ(x) = 1
x+4 , x ∈ [0, 3]. Then, for

x , y ∈ [0, 3], we have

|ϕ(x)− ϕ(y)| =

∣∣∣∣ 1

x + 4
− 1

y + 4

∣∣∣∣
=

∣∣∣∣ y + 4− x − 4

(x + 4)(y + 4)

∣∣∣∣
=

|x − y |
(x + 4)(y + 4)

≤ 1

16
|x − y |,

i.e., ϕ satisfies the Lipschitz condition with Lipschitz constant L = 1
16 .
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Theorem

Let ϕ : [α, β] → R be differentiable. Then ϕ satisfies the Lipschitz
condition with Lipschitz constant B if and only if

|ϕ′(x)| ≤ B for all x ∈ [α, β].

Proof.

1. Suppose ϕ satisfies the Lipschitz condition with Lipschitz constant B.
Then, for every x , y ∈ [α, β], we have

|ϕ(x)− ϕ(y)| ≤ B|x − y |,

whereupon
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Proof.

|ϕ′(x)| ≤ B for all x ∈ [α, β].

2. Suppose |ϕ′(x)| ≤ B for all x ∈ [α, β]. Then, for x , y ∈ [α, β], using the
mean value theorem, we have that there exists ξ ∈ [α, β] so that

|ϕ(x)− ϕ(y)| = |ϕ′(ξ)||x − y | ≤ B|x − y |,

i.e., ϕ satisfies the Lipschitz condition with Lipschitz constant B.
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Example

Let ϕ : [0, 2] → R be defined by ϕ(x) = arctan x , x ∈ [0, 2]. We note that
ϕ is continuously differentiable on [0, 2] and

ϕ′(x) =
1

1 + x2
, |ϕ′(x)| ≤ 1 for all x ∈ [0, 2].

Consequently, ϕ satisfies the Lipschitz condition with Lipschitz constant
B = 1.
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Example

Let ϕ : [0, 1] → R be defined by ϕ(x) = log(1 + x2), x ∈ [0, 1]. We note
that ϕ is continuously differentiable on [0, 1] and

ϕ′(x)| =
∣∣∣∣ 2x

1 + x2

∣∣∣∣ ≤ 2 for all x ∈ [0, 1].

Therefore, ϕ satisfies the Lipschitz condition with Lipschitz constant
B = 2.
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Example

Let

ϕ(x) =


1
x if x ∈ (0, 1],

0 if x = 0.

We assume that the function ϕ satisfies the Lipschitz condition with
Lipschitz constant B. Then for all x ∈ (0, 1] and y = 0, we have

1

x
≤ B,

which is a contradiction.
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Theorem

Let f be bounded and ∆-integrable over

R = [a1, b1)× [a2, b2)× . . .× [an, bn)

and let M and m be its supremum and infimum over R, respectively. If
ϕ : [m,M] → R is a function satisfying the Lipschitz condition, then the
composite function h = ϕ ◦ f is ∆-integrable over R.

Proof.

Let ε > 0 be arbitrarily chosen. Since f is ∆-integrable over R, there
exists P ∈ P(R) given by (??) and (??) such that
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Proof.

U(f ,P)− L(f ,P) <
ε

B
,

where B is a Lipschitz constant for ϕ. Let Mj1j2...jn and mj1j2...jn be the
supremum and infimum of f on Rj1j2...jn , respectively, and let M∗

j1j2...jn
and

m∗
j1j2...jn

be the corresponding numbers for h. Then, for every

(t j11 , t
j2
2 , . . . , t

jn
n ), (t ′j11 , t ′j22 , . . . , t ′jnn ) ∈ Rj1j2...jn ,

we have
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Proof.

h(t j11 , t
j2
2 , . . . , t

jn
n )− h(t ′j11 , t ′j22 , . . . , t ′jnn )

≤ |h(t j11 , t
j2
2 , . . . , t

jn
n )− h(t ′j11 , t ′j22 , . . . , t ′jnn )|

= |ϕ(h(t j11 , t
j2
2 , . . . , t

jn
n ))− ϕ(h(t ′j11 , t ′j22 , . . . , t ′jnn ))|

≤ B|f (t j11 , t
j2
2 , . . . , t

jn
n )− f (t ′j11 , t ′j22 , . . . , t ′jnn )|

≤ B(Mj1j2...jn −mj1j2...jn).

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 95 / 120



Proof.

Hence,
M∗

j1j2...jn −m∗
j1j2...jn ≤ B(Mj1j2...jn −mj1j2...jn)

because there exist two sequences

(t j11p, t
j2
2p, . . . , t

jn
np), (t

′j1
1p, t

′j2
2p, . . . , t

′jn
np) ∈ Rj1j2...jn

such that

h(t j11p, t
j2
2p, . . . , t

jn
np) → M∗

j1j2...jn , h(t ′j11p, t
′j2
2p, . . . , t

′jn
np) → m∗

j1j2...jn

as p → ∞.
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Proof.

Consequently,

U(h,P)− L(h,P) =

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(M∗
j1j2...jn −m∗

j1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≤ B

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(Mj1j2...jn −mj1j2...jn)
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Proof.

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

= B(U(f ,P)− L(f ,P))

< ε.

By Theorem 7, h is ∆-integrable.

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 98 / 120



Theorem

Let f be a bounded function that is ∆-integrable over

R = [a1, b1)× [a2, b2)× . . .× [an, bn).

If a′i , b
′
i ∈ [ai , bi ] with a′i < b′i for all i ∈ {1, 2, . . . , n}, then f is

∆-integrable over R ′ = [a′1, b
′
1)× [a′2, b

′
2)× . . .× [a′n, b

′
n).

Proof.

Let ε > 0 be arbitrarily chosen. Since f is ∆-integrable over R, there
exists P ∈ P(R) given by (??) and (??) so that
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Proof.

U(f ,P)− L(f ,P) < ε.

Let P ′ ∈ P(R) be such that

P ′ = P ∪ {{a′1, b′1} × {a′2, b′2} × . . .× {a′n, b′n}}.

Then P ′ is a refinement of P. Therefore,

L(f ,P) ≤ L(f ,P ′) ≤ U(f ,P ′) ≤ U(f ,P).

Hence,
U(f ,P ′)− L(f ,P ′) ≤ U(f ,P)− L(f ,P) < ε.
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Proof.

Now, consider P ′′ ∈ P(R) consisting of all subrectangles of P ′ belonging
to R ′. If Ũ and L̃ are the upper and lower ∆-sums of f on R ′ associated
with the partition P ′′, then

Ũ − L̃ ≤ U(f ,P ′)− L(f ,P ′) < ε.

Hence, by Theorem 7, f is ∆-integrable over R ′.
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Theorem

Let f be a bounded function that is ∆-integrable on

R = [a1, b1)× [a2, b2)× . . .× [an, bn).

If α ∈ R, then αf is ∆-integrable on R and∫
R
αf (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = α

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn.

(9)

Proof.

If α = 0, then (9) is obvious as both sides of (9) are equal to zero in this
case.
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Proof.

Let ε > 0 be arbitrarily chosen. We assume α ̸= 0.
1. Let α > 0. Since f is ∆-integrable over R, there exists P ∈ P(R) given
by (??) and (??) so that

U(f ,P)− L(f ,P) <
ε

α
.

Thus,
U(αf ,P)− L(αf ,P) = αU(f ,P)− αL(f ,P) < ε.

Hence, by Theorem 7, αf is ∆-integrable over R. Also, we have

αL(f ,P) = L(αf ,P) ≤ U(αf ,P) = αU(f ,P),

whereupon
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Proof.

αL(f ) = L(αf ) ≤ U(αf ) = αU(f ).

From here, using that L(f ) = U(f ), we conclude (9).
2. Let α < 0. Since f is ∆-integrable over R, there exists P ∈ P(R) such
that

ε

α
< U(f ,P)− L(f ,P) < − ε

α
.

Thus,
U(αf ,P)− L(αf ,P) ≤ −α(U(f ,P)− L(f ,P)) < ε,

and hence, by Theorem 7, αf is ∆-integrable over R. As in the previous
case, we get (9). The proof is complete.
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Theorem

If f and g are bounded functions that are ∆-integrable over

R = [a1, b1)× [a2, b2)× . . .× [an, bn),

then f + g is ∆-integrable over R and∫
R
(f + g)(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

=

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn+

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn.

(10)
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Proof.

Let ε > 0 be arbitrarily chosen. Since f and g are ∆-integrable over R,
there exists P ∈ P(R) given by (??) and (??) such that

U(f ,P)− L(f ,P) <
ε

2
and U(g ,P)− L(g ,P) <

ε

2
.

Because

U(f + g ,P) ≤ U(f ,P) +U(g ,P) and L(f + g ,P) ≥ L(f ,P) + L(g ,P),
(11)

we find
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Proof.

U(f + g ,P)− L(f + g ,P) ≤ U(f ,P) + U(g ,P)− L(f ,P)− L(g ,P)

= U(f ,P)− L(f ,P) + U(g ,P)− L(g ,P)

<
ε

2
+

ε

2

= ε.

Hence, by Theorem 7, it follows that f + g is ∆-integrable over R.
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Proof.

From (11), we get

U(f + g) ≤ U(f ) + U(g) and L(f + g) ≥ L(f ) + L(g),

whereupon

U(f ) + U(g) = L(f ) + L(g) = U(f + g) = L(f ) + L(g),

i.e., (10) holds.
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Corollary

If f and g be bounded ∆-integrable over

R = [a1, b1)× [a2, b2)× . . .× [an, bn)

and α, β ∈ R, then αf + βg is ∆-integrable over R and∫
R
(αf + βg)(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

= α

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn+β

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn.

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 109 / 120



Proof.

Since f and g are ∆-integrable over R, by Theorem 49, we get that αf
and βg are ∆-integrable over R and∫
R
αf (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = α

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn,∫

R
βg(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn = β

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn.

From here and from Theorem 50,
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Proof.

we find that αf + βg is ∆-integrable over R and∫
R
(αf + βg)(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

=

∫
R
αf (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn +

∫
R
βg(t1, t2, . . . , tn)∆1∆2t2 . . .∆ntn

= α

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn + β

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn,

completing the proof.
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Theorem

If f and g are bounded functions that are ∆-integrable over R with

f (t1, t2, . . . , tn) ≤ g(t1, t2, . . . , tn) for all (t1, t2, . . . , tn) ∈ R,

then∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn ≤

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn.

Proof.

By Corollary 51, we have that g − f is ∆-integrable over R.
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Proof.

Since g − f is nonnegative on R, we have

L(g − f ,P) ≥ 0 for all P ∈ P(R).

Hence, by Corollary 51, we get

0 ≤ L(g − f ,P)

≤
∫
R
(g(t1, t2, . . . , tn)− f (t1, t2, . . . , tn))∆1t1∆2t2 . . .∆ntn

=

∫
R
g(t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn −

∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn,

which completes the proof.
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Theorem

If f is a bounded function that is ∆-integrable over R, then so is |f |, and∣∣∣∣∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn

∣∣∣∣ ≤ ∫
R
|f (t1, t2, . . . , tn)|∆1t1∆2t2 . . .∆ntn.

Proof.

Let ε > 0 be arbitrarily chosen. Since f is ∆-integrable on R, there exists
P ∈ P(R) given by (??) and (??) so that

U(f ,P)− L(f ,P) < ε.

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 114 / 120



Proof.

Let

M j1j2...jn = sup{|f (t1, t2, . . . , tn)| : (t1, t2, . . . , tn) ∈ Rj1j2...jn},

mj1j2...jn = inf{|f (t1, t2, . . . , tn)| : (t1, t2, . . . , tn) ∈ Rj1j2...jn}.

Thus,

M j1j2...jn −mj1j2...jn

= sup{|f (t1, t2, . . . , tn)| − |f (t ′1, t ′2, . . . , t ′n)| : (t1, t2, . . . , tn), (t
′
1, t

′
2, . . . , t

′
n) ∈ Rj1j2...jn}
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Proof.

≤ sup{|f (t1, t2, . . . , tn)− f (t ′1, t
′
2, . . . , t

′
n)| : (t1, t2, . . . , tn), (t

′
1, t

′
2, . . . , t

′
n) ∈ Rj1j2...jn}

= Mj1j2...jn −mj1j2...jn .

Therefore,

U(|f |,P)− L(|f |,P) ≤ U(f ,P)− L(f ,P) < ε.

Hence, using Theorem 7, we get that |f | is ∆-integrable over R. Since
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Proof.

−f (t1, t2, . . . , tn) ≤ |f (t1, t2, . . . , tn)| and f (t1, t2, . . . , tn) ≤ |f (t1, t2, . . . , tn)|

for all (t1, t2, . . . , tn) ∈ R, using Theorem 52, we get

−
∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn ≤

∫
R
|f (t1, t2, . . . , tn)|∆1t1∆2t2 . . .∆ntn

and∫
R
f (t1, t2, . . . , tn)∆1t1∆2t2 . . .∆ntn ≤

∫
R
|f (t1, t2, . . . , tn)|∆1t1∆2t2 . . .∆ntn,

which completes the proof.

Theorem

If f is a bounded function that is ∆-integrable over R, then so is f 2.
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Proof.

Since f 2 = |f ||f |, without loss of generality, we assume that f is
nonnegative over R. Let

Mf = sup{f (t1, t2, . . . , tn) : (t1, t2, . . . , tn) ∈ R}.

Let ε > 0 be arbitrarily chosen. Since f is ∆-integrable over R, there
exists P ∈ P(R) given by (??) and (??) so that

U(f ,P)− L(f ,P) <
ε

2Mf + 1
.

Hence,

U(f 2,P)− L(f 2,P)

=

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

M2
j1j2...jn(t

j1
1 − t j1−1

1 )(t j22 − t j2−1
2 ) . . . (t jnn − t jn−1

n )
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Proof.

−
k1∑

j1=1

k2∑
j2=1

. . .

kn∑
jn=1

m2
j1j2...jn(t

j1
1 − t j1−1

1 )(t j22 − t j2−1
2 ) . . . (t jnn − t jn−1

n )

=

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(Mj1j2...jn +mj1j2...jn)(Mj1j2...jn −mj1j2...jn)

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

≤ 2Mf

k1∑
j1=1

k2∑
j2=1

. . .

kn∑
jn=1

(Mj1j2...jn −mj1j2...jn)
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Proof.

×(t j11 − t j1−1
1 )(t j22 − t j2−1

2 ) . . . (t jnn − t jn−1
n )

= 2Mf (U(f ,P)− L(f ,P))

< 2Mf
ε

2Mf + 1

< ε,

which completes the proof.
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