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Definition
Suppose

P=PixPyx...xP, and Q= Q1 X @ X...X Qp,
where P;, Q; € P([a;, b;)), i € {1,2,...,n}, are two A-partitions of
R = [a1, bl) X [32, b2) X ... X [an, bn).

If P; is generated by a set
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(¢, ¢}, ... t9), where a=t)<tl<.. <ti=b,

1

and Q; is generated by a set

{rP,72,..., 7P}, where a=71? <7l <...<71P =01,

then, by
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Definition

P+Q=(P1+ Q)% P2+ Q) x...x(Pn+ Qn),
we denote the A-partition of R generated by

Pt Q={tOth YU {07 P}, =120

Obviously, P+ Q is a refinement of both P and Q.
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If f is a bounded function on R and if P and @ are any two A-partitions
of R, then

L(f,P) < U(f,Q),

i.e., every lower sum is less than or equal to every upper sum.
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Since P+ Q is a A-partition of R, which is a refinement of both P and @,
applying Theorem 77, we get

L(f,P) < L(f,P+ Q) < U(f,P+ Q) < U(f,Q),

ie., L(f,P) < U(f, Q). 0
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If f is a bounded function on R, then L(f) < U(f).

Let P € P(R). Then
L(f,P) < U(f,Q) forall Qe P(R).
Hence,

L(f,P) < Qei%f(R) U(f, Q) = U(f).

Because P € P(R) was arbitrarily chosen, we conclude that

sup L(f,P) < U(f),
PEP(R)

L(f) < U(f),

completing the proof. ]
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If L(f, P) = U(f, P) for some P € P(R), then the function f is
A-integrable over R and

/ f(tl, to,..., tn)AltlAztg RUANS L(f, P) = U(f, P)
R

The result follows from the inequality

L(f,P) < L(f) < U(f) < U(f, P).
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A bounded function f on R is A-integrable if and only if for each € > 0,
there exists P € P(R) such that

U(f,P) — L(f,P) < . (1)
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Let f be A-integrable on R. Then

Using the definitions of L(f) and U(f), it follows that there exist
P, Q € P(R) such that

L(f,P) > L(f) —g and  U(f,P) < U(f) + g

Let S = P+ Q, which is a refinement of both P and Q. Thus, employing
Theorem ??, we find

U(f,S) < U(f,Q) and L(f,S)> L(f,P)

and ]
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u(f,s) - L(f,S) < U(f,Q)—L(f,P)

13 13
< —L(f)+§+ U(f)+§

= £&.

Conversely, suppose that for every € > 0, the inequality (1) holds for some
P € P(R). Therefore, O
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U(f) < U(f,P)
= U(f,P)— L(f,P) + L(f, P)

< e+ L(f,P)

IN

e + L(f).
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Since € > 0 was arbitrarily chosen, we get
U(f) < L(f).

From the last inequality and from Theorem 5, we conclude that
U(f) = L(f), i.e., f is A-integrable on R. The proof is complete. O
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Let T be a time scale with forward jump operator . We note that for

every § > 0, there exists at least one partition Py € P([a, b]) generated by

a set
{to, t1,t2, ..., ta} C [a,b], where a=ty<t;<...<t,=bh,
such that for each i € {1,2,...,n} either
ti—ti_1 <9

or
ti—ti_1 >0 and G(t,'_l) = t;.
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Definition
We denote by Ps([a, b)) the set of all Py € P([a, b)) that possess the
property indicated in Remark 0.2. Further, by Ps(R), we denote the set of

all P € P(R) such that

P=P1 xPyx...xP, where P;ePs(a;,bi)), i=1,2,...,n
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Let P° € P(R) be given by
-
in which P® € P([aj, b;)), i € {1,2,...,n}, is generated by a set

in;

A = {tg7t2:-'-vt3,} C[ai, bi], where a;=t) <t} <...<t) =b.
Then, for each P € Ps(R), we have

L(f,P° + P) — L(f,P) < (M —m)D"Y(ny + nay+...+n, — n)d
and

U(f,P) — U(f,P+ P°) < (M —m)D" Y(ny 4+ na + ...+ n, — n)d,

where D = max;c(12,. ny{bi — ai}, and M and m are defined as above.
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Suppose the partition P is given by
P=P;1 xP,x...xP,
in which P; € Ps([aj, b)) is generated by a set

A= {tdtl,..., t,’;i} C lai, bil,

where ' _ '

ai=tg<ty<...<t,=b, i=12...,n
Let Q=P°+P=Q1 x Q2 x...x Qp where Q; € P([a;, bi)),
i=1,2,...,n, are generated by the sets []
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Bi =A%+ A,
We suppose that there exists i € {1,2,...,n} such that B; has one more
point, say t’, than A; and Bj=A;, | #1i,1€{1,2,...,n}. Then

t' € (t_q,t)) for some ki € {1,2,...,p;}, where t; —t; ; <6. If
t,’;l, = tll;,-—l > 4, then, using

P; € Ps([ai, bi)),

we haVe O—(tll(’_l) S tll(, and (tli(,-—]j tl’(,) = @ D
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Now, denoting by my,k,. «,, mﬂzqun, and mfjiz...k,, the infimum of f on
Rickokn = [tki—1sthy) X [tio—1, tip) X - X [ti,—1, tk, )
RrY = [ta—1,te) X ... X [t ti ) X [ti_1,t') X [t t
klkg...k,, — k1—17 k1 k;,1—17 k,',l k,‘—17 k,‘+1—17 k,’+1
DJ
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X ... X [tk,,—l’ tkn)7

2
Rl(ql)<2...k,, = [tk1—17 tk1) XX [tki—1_17 tki—l) x [tl’ tki) X [tki+1—17 tki+1)
X ... X [tknfl, tk,,))
respectively, we have [
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(1)

mkle...k,, 2 mklkz...kn7

(2)
My ko kp = Mhikekns

(1)
Mok — Miikooky < M —m,

(2)
Mok — Miikooky < M —m,

and

1 2
m(Rk]_kzkn) = m(Rl((ll)an) + ( I((II)Q -kn )

]
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so that
L(f,Q) — L(f,P)

Pi—1 Pi+1

Z Z Z Z Z ( J(kll)JlQ -Jkn m(l-?J‘(k];}kT--jkn)

=lip=1  Jk_=Llik, =1

m(R R(2)

—m: . - m(R. .
Jlik2 Jkn JkyJky -+ Jk) Jky kg -+-Jkn ( JlikZ”'Jkn)>
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P1 P2 Pi—1 Pi+1

Z Z Z Z Z <( J(kll?/kz dkn mjkljk2~~~jkn)

Jig=li,=1  Jk_; =Lk =1

(1) (2 L (2)
Xm(Rjkljkz.‘.jkn) + (mjkljkz...jkn - kaIJk2-~~Jkn)m(Rjkljkz...jkn))
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p1 P2 Pi—1 Pi+1

< M—=m Z Z Z Z Z( J(:sz Jkn)

1—1Jk2—1 Jki—l_ljki+1 =1 kn_l

+m(RZ), ))

JkyJky -+ Jkn

= (M—m)(tx, — ti,—1)
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Pi—1  Pit1

Y LLY S Z b — i )t — 1) (5, —

Jig=Vin=1  J_1=lik,  Jke=
< (M—m)D"15.

Since B; has at most n; — 1 points that are not in A;, an induction
argument shows that

L(f, Q) — L(f,P) < (M —m)(ni + ny+ -+ n, — n)D"" 4.

The proof of the other inequality is similar. O
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A bounded function f on R is A-integrable if and only if for each € > 0,
there exists § > 0 such that

P € Ps(R) implies U(f,P)— L(f,P) <e. (2)
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Suppose that for each € > 0, there exists § > 0 such that (2) holds.
Because P € P(R), we have that (1) holds. Hence, using Theorem 7, we
conclude that f is A-integrable on R.

Suppose that f is A-integrable over R. Let € > 0 be arbitrarily chosen.
Hence, by Theorem 7, it follows that there exists P° € P(R) such that

U(f, P°) — L(f, P°) < %
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Let D be as in Theorem 9 and P be determined as in Theorem 9. We

choose
€

0= .
4M — m)D"Y(ny +npy+ ...+ n, — n)

Then, using Theorem 9, for each P € Ps(R), we have

L(F,P°+P)—L(f,P) < (M—m)D" Yny+ny+---4n,—n)d
. €
= 47
U(f,P) = U(f,P°+P) < (M—m)D"Y(ny+n+---+n,—n)d
- £
[
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Using this and

L(f,P°) < L(f,P°+ P) and U(f,P°+ P)< U(f,P°),

we obtain
L(f,P%) — L(f,P) < % and  U(F, P) — U(f, P°) < %,
i.e.,
€ 0 e 0
—L(f,P) <y —L(f,P7) and U(f,P) <, + U(f, P).
Therefore, ]
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U(f,P) — L(f,P) < % — L(f, P%) + % + U(f, P°)
= 2+ U(F,PY) - L(F, P°)
P
27 2
= c&.
Thus, we have verified (2). O
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For every bounded function f on R, the Darboux A-sums L(f, P) and
U(f, P) evaluated for P € Ps(R) have limits as 6 — 0, uniformly with
respect to P, and

lim L(f,P) = L(f) and lim U(f,P) = U(F).
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We fix € > 0 and choose a partition P° € P(R) so that

L(f)— L(f,P°) <& and U(f,P°) — U(f) <.

Let P% be described as in Theorem 9. Then, for any P € Ps(R), using

Theorem 9, we have

L(f,P° + P) — L(f,P) < (M —m)D"Y(ny + ny+---+ n, — n)d

and

U(f, P) — U(f, P° + P) < (M — m)D"*(ny + nmy + - - - + n, — n)é.

We take
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5
0= .
(M —m)D"Y(ny +ny+---+ n, — n)

Because P° + P is a refinement of P°, we have
L(f,P°) < L(f,P°+ P) and U(f,P°+ P)< U(f,P°).
Thus,

L(f)—e < L(f,P°) < L(f,P°+P)
< L(f),

U(f) < U(f,P°+ P)

Ol
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< U(f,P%)

< e+ U(f).
Hence,
L(f,P°+P)— L(f,P°) <& and U(f,P°) — U(f,P°+ P) <e.
Therefore,

IL(F) — L(f,P)| = |L(f)— L(f,P° + L(f,P°) — L(f,P°+ P)

+L(f,P° + P) — L(f,P)|

Ol
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|L(F) — L(f, P°)| + |L(f, P°) — L(f, P° + P)|

IN

+|L(f, P+ P%) — L(f, P)|

< 5+€+(M—m)D”fl(n1+n2+~~+nn—n)6

IA

E+E+¢e

= 3¢

and ]
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|U(f, P) = U(f)]

Khaled Zennir

IA

IA

|U(f, P) — U(f, P+ P°) + U(f, P + P%) — U(f, P°
+U(f, P%) — U(f)]

\U(f, P) — U(f, P+ P°)| + |U(f, P+ P°) — U(f, P)
+U(f, P°) — U(f)
(M=m)D" (i +m+-+n,—n)d+e+e
E+e+e

3e,
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Definition

Let f be a bounded function on R and P € P(R). In each “rectangle”
Rijs..jr 1 < Jji < ki, i =1,2,...,n, choose a point &, ., and form the
sum

S= szfjuz Jn) '_ ty 1)-'-(#1"_#;"_1)' (3)

i=1 ji=

We call S a Riemann A-sum of f corresponding to P € P(R).
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Definition
We say that f is Riemann A-integrable over R if there exists a number /
such that, for each € > 0, there exists § > 0 such that

IS—1I<e

for every Riemann A-sum S of f corresponding to any P € Ps(R),
independent of the choice of the point &, ., € Rjj,..j, for 1 < ji < k;,
i=1,2,...,n.
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Definition

The number [ is called the Riemann A-integral of f over R.
We write

I = lim S.
6—0
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The Riemann A-integral is well defined.

Suppose that f is Riemann A-integrable over R and there are two
numbers /1 and b such that for every € > 0, there exists 0 > 0 so that
€

€
|5—/1‘<§ and |5—/2|<2

for every Riemann A-sum S of f corresponding to any P € Ps(R),
independent of the way in which &, ;. € Rjj,.j, for 1 < ji <k,
i=1,2,...,n, is chosen. Therefore, []

.
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|h—h| = |h—S+S5—h]
< |IS—h|+|5- 4k
< EL°
2 2
= &
Consequently, 1 = b. ]
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Note that in the Riemann definition of the integral, we need not assume
the boundedness of f in advance. However, it follows that the Riemann
integrability of a function f over R implies its boundedness on R.

A bounded function on R is Riemann A-integrable if and only if it is
Darboux A-integrable, in which case the value of the integrals are equal.
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Suppose that f is Darboux A-integrable over R in the sense of Definition
??. Let € > 0 and § > 0 be chosen so that (1) of Theorem 7 holds. Using
the definition of S, we have

L(f,P) < S < U(f, P).
Also,

U(F,P) < L(f,P)+e

IA
=
=
+
™

= / f(ti, to, ..., th)A1t1 Doty ... Apty + €,
R

Ol
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Hence,

L(f,P)

U(f,P)—¢

U(f)—e

/ f(tl, to,..., tn)AltlAQtz ARt — €.
R

5—/f(tl,t2,...,t,,)AltlAth...A,,tn < U(f,P)
R

Khaled Zennir

Time Scales Analysis Lecture 28

December 10, 2025

44 /120



—/ f(tl,t2,...,t,,)AltlAztz...Antn

R

< /f(tl,tg,...,t,,)AltlAztg...A,,tn—i—a
R

—/ f(l’l, to,..., tn)AltlAztz AN
R

and

5—/f(tl,tg,...,tn)AltlAgtz...Antn > L(f,P)
R

Ol
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—/ f(tl, to,..., tn)AltlAztg AN
R

> / f(ti,to, ..., th)A1t1 Doty .. . Aty — &
R

—/ f(tl, to,..., tn)AltlAQtz AN
R

= =&

Consequently,
‘5 = / f(tl, to,..., tn)A1t1A2t2 AN S
R

O
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Now, we suppose that f is Riemann A-integrable in the sense of Definition
12. Select P € Ps(R) of the type (??) and (??). For each
i€{l,2,...,n} and 1 < j; < k;, we choose &, j, € Rjj,..j, o that

Mjio..gn — € < F (i) < Misj...jo T €

The Riemann A-sum S for this choice of the points & j,. ;. satisfies O

v
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fP—sH(b i) < S < L(f, P)+5H
=1
as well as
—e<S—-I<e.
Thus,
L(f) > L(f,P)
> S—e[]bi—a)
i=1
> I—e—sH(b,- a;)
i=1
and ]
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uir) < U(f,P)

< S+e]]bi—a)

i=1

< I+6+5H(b,~ — a;).
il

Since £ > 0 was arbitrarily chosen, we conclude that

L(F)>1 and U(f) <,

I < L(F) < U(F) < 1.

This completes the proof. [
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In the definition of

/ f(tl, to,..., tn)AltlAth RVANN 8
R

with R = [a1,b1) X ... X [an, bn), we assumed that a; < b;, i € {1,...,n}.
We extend the definition to the case a; = b; for some i € {1,2,...,n} by

setting
/ f(tl,t2,...,tn)AltlAQtz...Antn:0 (4)
R
if aj = bj for some i € {1,...,n}.
y
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Let a=(a1,...,an) € A" and b= (by,...,b,) € N\" with a; < b; for all
i € {1,...,n}. Every constant function

f(tl,tz,...,tn):A for (tl,tz,...,t,,)eR:[al,bl)><...><[a,,,bn)

is A-integrable over R and

n
/ f(tl, to,..., tn)AltlAztz AN AH(b, = a,-). (5)
& i=1
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We assume that a; < b; for all i € {1,...,n}. Consider a partition P of R
of the type (??) and (??). Since

Mj1j2-~~jn = Mjijp...jn = A forall 1 SJ, < k,', | € {1, ceey n},

we have that

U(f,P) = L(f,P) = AHb — aj).

Hence, using Theorem 7, it follows that f is A-integrable and (5) holds. If
aj = b; for some i € {1,...,n}, then (5) follows by (4). Note that every
Riemann A-sum of f associated with P is also equal to

AH?:l(bi — a,-). L]
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Let t = (¢9,...,t9) € A". Every function f : A" — R is A-integrable over
R = R(t°) = [t],01(1])) x ... x [ty ou(ty)),

and

n
/ f(tla f,..., tn)Alt1A2t2 s Antn = Hﬂi(tlp)f(t:(l)a EED tr?) (6)
1 i=1

v
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If 11;(t?) = 0 for some i € {1,..., n}, then (6) is obvious as both sides of
(6) are equal to zero in this case. If u;(t2) > 0 for all i € {1,...,n}, then
a single partition P of R(t%) is

[0, 01(80)) x ... x [tn, 0n(t])) = {(£, ..., t3)}.
Consequently, we have

U(f,P) = L(f,P) = HP" (D, ..., t9).

Therefore, Theorem 7 shows that f is A-integrable over R(t°) and (6)
holds. Note that the Riemann A-sum associated with the above partition
is also equal to the right-hand side of (6). O
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Let a = (a1,a2,...,an) € A" and b = (b1, by, ..., by) € A" with a; < b;
forall i € {1,2,...,n}. IfT; =R forevery i€ {1,2,...,n}, then every
bounded function f on R = [a1, b1) X [a2, b2) X ... X [ap, bn) is
A-integrable if and only if f is Riemann integrable on R in the classical
sense, and in this case

/f(tl,tz,...,tn)AltlAgtg...AntnI/f(tl,t2,...,tn)dt1dt2...dtn,
R R

where the integral on the right-hand side is the ordinary Riemann integral.

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 55/120



Clearly, Definition ?? and Definition 12 of the A-integral coincide in the
case T; =R, i € {1,2,..., n}, with the usual Darboux and Riemann
definitions of the integral, respectively. Note that the classical definitions
of Darboux’s and Riemann’s integral do not depend on whether the
rectangles of the partition are taken closed, half-closed, or open.
Moreover, if T; =R, i € {1,2,..., n}, then Ps(R) consists of all partitions
of R with norm (mesh) less than or equal to d+/n. O
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Let a = (a1,a2,...,an) € A" and b = (b1, by, ..., by) € A" with a; < b;
foralli € {1,2,...,n}. IfT; =7 forall i € {1,2,...,n}, then every
function defined on R = [a1, b1) X [a2, b2) X ... X [an, by) is A-integrable
over R, and
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/ f(tl, to, ..., tn)AltlAztz AN
R

0 if aj = b; for some i € {1.

Shmlsnbel bl ) otherwise.

r=ai n=as " rn=an
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Let bj =a; + pi, pi €N, i € {1,2,..., n}. Consider the partition P* of R
given by (??) and (??) with k; = p;, i € {1,2,...,n}, and

0 1 ki
ti =a;, ti=a+1, ..., t' = aj + p;.

Thus, R} j,..j, contains the single point (t{lfl, té-z*l, . 7). Therefore,

b1—1 by—1 b,—1

U(F, P ) =L(FP Y=Y > ...> flr,m,... ).

rn=ai n=az rn=an

Hence, Theorem 7 shows that f is A-integrable over R and (7) holds for
aj < b, i € {1,2,...,n}. If a; = b; for some i € {1,2,...,n}, then the
relation (4) shows the validity of (7). O
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Example
Let T; = T, = Z. We consider

4 8
/ :/ / t2(2t1 F 1)A1t1A2t2.
0 J1
Here,

f(t1, t2) = to(2t1 + 1), (t1,t2) € Ty x To,

oi(ti))=t1+1, €T, oot)=t+1 tecTs

We note that
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A A
(Lt)y = t(f)y"

= to(o1(t1) + t1)
= thth+1+t)

= t(2t; +1).

Therefore,
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Hence,

Since

3
/t2(2t1+1)A1t1 = tt?
1

4 4
| = / 63t, Aoty = 63/ tAsts.
0 0
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1 1
5 ((tzz)é2 — 1) = 5(02(152) + i — 1)
1
= E(tg—i-l—i-tg—l)
= t27
we get

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 63 /120



504 — 126

378.
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Let Ty = Z and T, = 2N, We consider
1.1 38 1
| = §Sin 5/0 /2 tp cos <t1 aF 5) A1t1 Ay,
Here,
1 1y . 1

f(tl,tz)ZEtQCOS t1+§ sin > (tl,tg) € Ty x Ty,

0’1(1.‘1): t1+1, t; €Ty, 0'2(1'2) =2ty, tr € Ts.
Since
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(sin tl)ﬁl

sin Ul(tl) —sinty

Ul(tl) —h
sin(ty +1) —sinty
a ti+1l-t
1 1 - 1
= —sin=cos |t + =
2 2 2)°
we get
.
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1.1 /8 1 8 A
—sin — thbcos|(t1 += | A1t = b (sm tl)t A1t
2 2 /s 2 5 1

. t1=8
= 1tsint;

t1=

= ty(sin8 —sin2)

= 2tpsin3cosb.

Therefore,
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3
l:25in3c055/ tr Ao tr.
0

Because

('fzz)é2 o2(tr) + to = 2t + tp = 3,

we get
1 oa
b = §(t§)t22'

Consequently,
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3
1
2sin 3c055/ §(t22)é2A2t2
0

2 3
3 sin 3c055/ (t22)22A2t2
0

tr=3

2
Z sin3cos5t2
3 SINn 5 COS ) =0

6 sin 3 cos 5.
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Let Ty = 3Z and T> = 3N. We consider

9 12
/ :/ / (t1t2+2t1+t2+3)A1t1A2t2.
3 -3

Here,

f(ti, ) =tito+2t1 + o+ 3, (t1,t2) € T1 x Ty,

U1(t1)= t1 +3, t; €Ty, O'2(t2)=3t2, t, € T».

We note that
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(B)a = o1(t) + t1 =21 + 3,

whereupon

()5 — 3

t1 = 2 )

()" =3
tith +2t1 + th + 3 = #(t2+2)+1.’2+3,

and

-3 =8

12 12 (t2)A1—3
/ f(t, )Mty = / 1%(54-2)4-(1“24-3) Aty
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12
ZX]_tl %-y/r
3

12
A1ty
-3

1
(144 — 0) — —5t2

th +2 ,|n=12

2
+2

to

2

t

t1:—3

t

135
2

15

(2 +2) -3

60t> + 135.

(

2

(2 +2)+ 1t +3> A1ty
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Therefore, .
/=/ (60t2 + 135)Asty.

3

Since
(tg)éz = 02(t2) aF t2 = 3t2 =+ t2 = 4t2’
we get
1 A

t2 = Z(tg)t22'

Consequently,
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° IRV
| = 60-Z(t2)t22+135 Aoty
3
9 9
= 15/ (t%)nggtz—i-l?)S/ YA 5
3 3

t
= 152

=9
+135-6
=&

[}

= 15.(81—9)+810

= 1890.
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Note that A" is a complete metric space with the metric D defined by

and also with the equivalent metric

d(t,s) = I_E{;nzax n}{]t,- —sil}.

Definition
A function f : A" — R is said to be continuous at t € A" if for every
€ > 0, there exists § > 0 such that

[f(t) —f(s)| <e

for all points s € A" satisfying d(t,s) < .
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If t is an isolated point of A", then every function f : N — R is
continuous at t. In particular, if T; = 7Z for all i € {1,2,...,n}, then every
function f : A" — R is continuous at each point of \".

Every continuous function on K = [ay, b1] X [a2, b2] X ... X [an, by] is
A-integrable over R = [a1, b1) X [a2, b2) X ... X [an, bp).
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Let € > 0 be arbitrarily chosen. Since f is continuous, it is uniformly

continuous on the compact subset K of A”. Therefore, there exists § > 0

such that

t=(t1,to,...,ta), t' =(t,t,...,t,) €R and maxjcio. m{lti 1

implies  |f(t) — f(t')] < (2n71)H,”:€1(b,-fa;+1)'
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Consider P € P(R) given by (??) and (??). Let
Ripin = [ o8O x [ oo ] x o [t an (871,
Mj1j2-~.jn = Sup{f(tl,tz,...,tn) : (t]_,t2,...,tn) (= I:;\)‘J-lj2~--jn}7
mj1j2-~-jn = inf{f(tl,tg,...,tn) : (t]_,t2,...,tn) € fﬂ?'jljzmjn}.
L]
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Then, since R}, j, C Rjijp...j,» we have
Mjijojo < Mjtjoojn < Moo < Mjijy.j

for 1 <ji < k;, i=1,2,...,n. Therefore, taking into account that 7
assumes its maximum and minimum on each compact rectangle K;,j,. ;..
(8) shows O

v
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1 2
U(f, P) — L(f,P) = ZZ Z litio-dn = Mitjo..ojn)

A=lp=1  jp=1

(TR -2 (-t

1 2
Z Z Z livjardn = Mjijo..ojn)

h=1jp=1 Jn=1

(= (2 — 27Y (- )
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>

(Mjsjo..jn = Mjijo.jn)

tih—th 1<
)6 — ) ()
> (Moo — Mo )
eI RE

>t -

)
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> oY X

A R R

g(2"—-1)

= @ DIa(bi—a+ 1)

(Mjijo..j — M. jn)

-t
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ki ko

35T S0 — e ) ()

h=lp=1  j,=1

5H7:1(bi — aj)
[[7-1(bi — ai + 1)

< e

Thus, U(f, P) — L(f, P) < . Hence, Theorem 7 yields that f is
A-integrable. Ol
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We say that a function ¢ : [a, ] — R satisfies the Lipschitz condition if
there exists a constant B > 0, a so-called Lipschitz constant, such that

lo(u) — d(v)| < Blu—v| forall wu,ve]|a,s].
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Let ¢ : [0,1] — R be defined by ¢(x) = x> + 1, x € [0,1]. Then, for
x,y € [0,1], we have

6(x) = d(y)l = ¥ +1-y* -1
= -y
= |x—yllx+yl
< x=yl(lx+1yl)

< 2’X_.y|a

i.e., ¢ satisfies the Lipschitz condition with Lipschitz constant B = 2.
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Let ¢ : [0, 7] — R be defined by ¢(x) = sinx, x € [0,n]. Then, for
x,y € [0, 7], we have

[¢6(x) = d(y)| = [sinx —siny|

= 2sinX_ycosX+y‘
2

. X—Yy X+y
= 2

sin > cos 5 ‘
< XVl
- 2
= ’X_y|a

i.e., ¢ satisfies the Lipschitz condition with constant B = 1.
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Let ¢ : [0,3] — R be defined by ¢(x) = X—jl%, x € [0,3]. Then, for
x,y € ]0,3], we have

1 1
x+4 y+4

[6(x) = ¢(y)l =

y+4—x—w
(x+4)(y +4)

Ix =yl
(x +4)(y+4)

<*1\ \
.
= 1% 7Y

i.e., ¢ satisfies the Lipschitz condition with Lipschitz constant L = %.

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025 87 /120



Let ¢ : [a, f] — R be differentiable. Then ¢ satisfies the Lipschitz
condition with Lipschitz constant B if and only if

|¢'(x)] < B forall xé€[a,p].

1. Suppose ¢ satisfies the Lipschitz condition with Lipschitz constant B.
Then, for every x,y € [a, (], we have

6(x) = o(y)| < Blx = yl,

whereupon [
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|¢'(x)] < B forall xé€[a,p].

2. Suppose |¢/(x)| < B for all x € [a, 5]. Then, for x,y € [a, (], using the

mean value theorem, we have that there exists £ € [«, ] so that

6(x) — o(y)| = [¢'(E)lIx — y| < Blx — v,

i.e., ¢ satisfies the Lipschitz condition with Lipschitz constant B.
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Let ¢ : [0,2] — R be defined by ¢(x) = arctan x, x € [0,2]. We note that
¢ is continuously differentiable on [0,2] and
¢ (x) = |¢'(x)| <1 forall xe]0,2].

1—|—x27

Consequently, ¢ satisfies the Lipschitz condition with Lipschitz constant
B=1.
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Let ¢ : [0,1] — R be defined by ¢(x) = log(1 + x2), x € [0,1]. We note
that ¢ is continuously differentiable on [0, 1] and

2x
1+ x2

P'(x)| = ‘ <2 forall xe][0,1].

Therefore, ¢ satisfies the Lipschitz condition with Lipschitz constant
B=2.
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Let
if xe(0,1],

X |

¢(x) =
0 if x=0.

We assume that the function ¢ satisfies the Lipschitz condition with
Lipschitz constant B. Then for all x € (0,1] and y = 0, we have

< B,

X |

which is a contradiction. )
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Let f be bounded and A-integrable over
R = [al,bl) X [ag,bz) X ... X [a,,,b,,)

and let M and m be its supremum and infimum over R, respectively. If
¢ : [m, M] — R is a function satisfying the Lipschitz condition, then the
composite function h = ¢ o f is A-integrable over R.

Let € > 0 be arbitrarily chosen. Since f is A-integrable over R, there
exists P € P(R) given by (??) and (??) such that O
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5
U(f,P)— L(f,P) < B’
where B is a Lipschitz constant for ¢. Let M;;, ;i and mj, ; be the
supremum and infimum of f on R;j, ;.. respectively, and let Mﬁjg...j,, and
m ;. be the corresponding numbers for h. Then, for every
. . I )

(t{l, t‘f, RN t{’"), (tl"l, 2JZ, ey tg") € lequJn?

we have [
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h(tf 5, t0) = h(ef", 65, 1)

<IN )~ R )

’Tn

= |p(h(t], t2, ... ) — o(h(t, 2, ... th))]

< B|f(H, 62, 6 — F( P, )]

IA

B(Mjsjy...jo = Mjsfo...jn)-
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Hence,
* *
Mjljz‘..jn — g g S B(Mjsjo...jn = Mjtfo...jn)

because there exist two sequences

i1 2 4 1 4l /J
(t1p By s thp)s (tips 5ps - -+ » tp) € Rijo..ij

1p’
such that
2 J 1L 4l Ij *
h( o Do o 2 t")—> m ip h(tlp,tzp,...,tn;;)—>mj1j2mjn
as p — 0. []
v
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Consequently,

ki ko
U(h, P) = L(h,P) = Z Z Z 1112 Jn J*'11'2-~Jn)

J1=1jp=1 Jn=1
(b — (e — 2T (- )

ki ko

< BZZ Z litio-dn = Mitjo..ojn)

1=1=1 Jn=1
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x(tf — (R -2 (-
= B(U(f,P)— L(f,P))

< E&.

By Theorem 7, h is A-integrable. [
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Let f be a bounded function that is A-integrable over
R = [al,bl) X [82, bg) X ... X [a,,, bn).

If &, bl € [aj, bi] with &} < b} for all i € {1,2,...,n}, then f is

i~

A-integrable over R' = [a}, b}) X [a}, b)) X ... X [a},, b},).

Let € > 0 be arbitrarily chosen. Since f is A-integrable over R, there
exists P € P(R) given by (??) and (??) so that O
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U(f,P) — L(f,P) <e.
Let P’ € P(R) be such that
P'= PuU{{a], b} x {ab, by} x ... x {a,, b.}}.
Then P’ is a refinement of P. Therefore,
L(f,P) < L(f,P") < U(f,P") < U(f, P).

Hence,
U(f, P’) — L(f, P’) < U(f,P)— L(f,P) <e.
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Now, consider P” € P(R) consisting of all subrectangles of P’ belonging
to R’. If U and L are the upper and lower A-sums of f on R’ associated
with the partition P”, then

U-L<U(f,P)—L(f,P)<e.

Hence, by Theorem 7, f is A-integrable over R’. OJ
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Let f be a bounded function that is A-integrable on
R = [al, bl) X [32, bg) X ... X [a,,, b,,).
If « € R, then af is A-integrable on R and

/Oéf(t]_,t2,...,tn)A]_t]_A2t2...Antn—a/f(t]_,tg,...,tn)A]_t]_AQtQ...A
R R
(9)

If &« =0, then (9) is obvious as both sides of (9) are equal to zero in this
case. Ul
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Let € > 0 be arbitrarily chosen. We assume « # 0.
1. Let > 0. Since f is A-integrable over R, there exists P € P(R) given
by (??) and (??) so that

U(f,P) — L(f,P) < 2

Thus,
U(af, P) — L(af,P) = aU(f, P) — aL(f,P) < e.

Hence, by Theorem 7, af is A-integrable over R. Also, we have

al(f,P) = L(af, P) < U(af, P) = aU(f, P),

whereupon [
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al(f) = L(af) < U(af) = aU(f).

From here, using that L(f) = U(f), we conclude (9).
2. Let @ < 0. Since f is A-integrable over R, there exists P € P(R) such

that

™

€
= f,P)— L(f,P) < ——.
o <U(f,P) = L(f,P) < —

Thus,
U(af, P) — L(af,P) < —a(U(f, P) — L(f,P)) < ¢,

and hence, by Theorem 7, af is A-integrable over R. As in the previous
case, we get (9). The proof is complete. O
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If f and g are bounded functions that are A-integrable over
R = [317 bl) X [327 b2) X ... X [é!n7 bn),

then f + g is A-integrable over R and

/(f aF g)(tl, to, ..., tn)AltlAztg BVA N
R

:/ f(tl,tg,...,tn)A1t1A2t2...Antn—|—/ g(tl,tg,...,tn)A1t1A2t2...A
R R
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Let € > 0 be arbitrarily chosen. Since f and g are A-integrable over R,
there exists P € P(R) given by (??) and (??) such that

U(f,P)— L(f,P) < and U(g,P) - L(g,P) <

N ™
N ™

Because

U(f +g,P) < U(f,P)+ U(g,P) and L(f+g,P)>L(f,P)+L(g,P)
(1

we find y

oL
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U(f+g,P)—L(f+g,P) < U(f,P)+ U(g,P)— L(f,P)— L(g,P)

= U(f,P)—L(f,P)+ U(g,P)— L(g,P)

< £.¢
2 2
— &
Hence, by Theorem 7, it follows that f + g is A-integrable over R. Ol
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From (11), we get

U(f +g) < U(f)+ U(g) and L(f +g) = L(f) + L(g),
whereupon

U(f) + U(g) = L(f) + L(g) = U(f + g) = L(f) + L(g),

i.e., (10) holds. O
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If f and g be bounded A-integrable over

R = [al,bl) X [az,bg) X ... X [a,,,b,,)

and o, B € R, then af + g is A-integrable over R and

/(af + Bg)(t1, t2, ..., th) A1t1ldots ... Apt,
R

:a/ f(tl,t2,...,tn)AltlAQtQ...Antn—}-ﬁ/g(l’l,tg,...,tn)All’lAth..‘
R R
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Since f and g are A-integrable over R, by Theorem 49, we get that af

and g are A-integrable over R and

/Oéf(tl,tz,...,t,,)AltlAgtg...A,,t,, = a/f(tl,tQ,...,tn)AltlAgtz
R

R

From here and from Theorem 50,

R
Bg(ti, to, ..., ta)A1t1 Aoty ... Apt, = 5/g(tl,f2,---7tn)A1t1A2t2.-
R

O
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we find that af + g is A-integrable over R and

/(af + Bg)(t1, t2, ..., th) A1t1ldots ... Apty
R

= /af(tl,t2,...,tn)A1t1A2t2...Antn—|—/,Bg(tl,tz,...,tn)AlAth.
R R

= a/f(l’l,tz,...,tn)All’lAztz...Antn-f-,B/g(l’l,tz,...,tn)AltlA
R R

completing the proof.

Ol
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If f and g are bounded functions that are A-integrable over R with
f(ti,to,...,tn) < g(t1,t2,...,tn) forall (ti,to,...,ts) € R,

then

/f(t17t2a---atn)A1t1A2t2---AntnS/g(t17t27--~atn)A1t1A2t2-
R R

ARt

By Corollary 51, we have that g — f is A-integrable over R. Ol

Khaled Zennir Time Scales Analysis Lecture 28 December 10, 2025

112 /120



Since g — f is nonnegative on R, we have
L(g—f,P)>0 forall PeP(R).
Hence, by Corollary 51, we get

< /(g(tl,tg,...,t,,)—f(tl,tz,...,t,,))AltlAztz...A,,t,,
R
= /g(tl’t2:---atn)Alt1A2t2---Antn_/f(t17t27---atn)A1t1A2t2-
R R
which completes the proof. O
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If f is a bounded function that is A-integrable over R, then so is |f|, and

|

‘/ f(ti,to, ..., th)A1t1Asty ... Apty </ |f(t1, to, ..., tn)|A1t1lots . .. .
R R

Let € > 0 be arbitrarily chosen. Since f is A-integrable on R, there exists
P € P(R) given by (??) and (??) so that

U(f,P) — L(f,P) <e.
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Let
mJ'1J'2~~-J'n = sup{|f(t1, t,..., tn)‘ : (t17 t,..., t") € lejz-njn}’
ﬁjlhmjn =S inf{|f(t1, to,..., t,,)‘ : (tl, to,..., tn) S Rj1j2-~-jn}'
Thus,
‘M.

J1g2-dn  Mjija...jn

= sup{|f(ts, ta, ..., ta)| — |F(t], th, .

cot) s (tyty e tn), (B, By e e o

Ol
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< sup{|f(t1,ta,...,tn) — F(t1,th,...

= M, jo — Mjyjp._jo-

Therefore,

,t,:)‘ : (tl, t, ..

U(|f|, P) — L(|f|, P) < U(f,P) — L(f,P) < e.

Hence, using Theorem 7, we get that |f| is A-integrable over R. Since

v tn), (8, thy .

> tp)

Ol
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—f(t1, to, ..., ty) < |f(t1,t2,...,ty)| and f(t1,t2,...,tn) <|f(t1,12,...}

for all (t1,t2,...,tn) € R, using Theorem 52, we get

S

—/f(tl,t2,...,t,,)A1t1A2t2...A,,t,,g/ |f(t1, to, ..., tn)|A1t1 oty . ..
R R

=)
Py

and
/f(tl,tg,...,tn)AltlAgtz...Ant,,S/’f(tl,tg,...,tn)|A1t1A2t2...A
R R

which completes the proof. O

If f is a bounded function that is A-integrable over R, then so is 2.
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Since 2 = |f||f], without loss of generality, we assume that f is
nonnegative over R. Let

Mg = sup{f(t1, to,...,tn) : (t1,t2,...,ts) € R}.

Let € > 0 be arbitrarily chosen. Since f is A-integrable over R, there
exists P € P(R) given by (??) and (?7) so that

€
Hence,
U(f2>P) _ L(fZ’P)

ki ke Kn

= Y > Y M2 - - (-

a1=ljp=1  ja=1

[ ]
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Poof. ...
_Z Z Z Mjjo.. J th_ )(tj tér

h=lp=1  j,=1
ki ko

- Z Z Z livierdn + Mitjarjn) Migjo.. jn —

s1=1jp=1 Jn=1
(=g - ) (- )

ki ko

2Mey > Z oin = M)

A=1jp=1 Jn=1

IA

b (g —

mj1j2---jn)

)
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(b — ) (e — 27 (- )

= 2M¢(U(f, P) — L(f, P))

€
< 2Mf———
FaMy +1
< &,
which completes the proof. O
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