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Abstract

We obtain necessary and sufficient conditions for the uniform
stability of a system of Volterra integro-dynamical equations on
time scales. Our work will rely on the notion of the resolvent and
Lyapunov functionals. The results of this work provide
improvements for its counterparts in particular time scales. The
theory is illustrated with several examples.
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Outline

• Resolvent and derivation of Variations of Parameters formula
• Necessary and Sufficient conditions for Uniform Stability via the
Resolvent
• Applications and Comparison
The work of the above three bullets was a joint work with
Dr. Murat Adivar and published under
Necessary and sufficient conditions for uniform stability of Volterra
integro-dynamic equations using new resolvent equation” Analele
Stiintifice ale Universitatii
Ovidius Constanta, Seria Matematica, Vol. 21(3), 2014, 17–32.
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Outline-Continued

• Necessary and Sufficient conditions for Uniform Stability via
Lyapunov Functionals
• Applications and Comparison
• Open Problem
This work was published as
Youssef N. Raffoul, Necessary and sufficient conditions for stability
of Volterra integro-dynamic equation on time scales. Arch. Math.
(Brno), 52(1):21–33, 2016.
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We consider the system of Volterra integro-dynamic equation

x∆(t) = A(t)x(t) +

∫ t

t0

B(t, s)x(s)∆s, t ∈ [t0,∞)T, (1)

where A is and n × n matrix function that is continuous on
[t0,∞)T, B is an n × n matrix function that is continuous on

Ω := {(t, u) ∈ T× T : t0 ≤ u ≤ t < ∞} ,

and T is a time scales that is unbounded above with 0 ∈ T. We
adopt the notation

[a, b]T = [a, b] ∩ T.
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Resolvent

Definition (Adivar-Raffoul)

The resolvent matrix solution R(t, s) of (1) is the unique solution
of

R∆s (t, s) = −R(t, σ(s))A(s)−
∫ t

σ(s)
R(t, σ(u))B(u, s)∆u, (2)

With R(t, t) = I , where I is the n × n identity matrix.

Our variation of parameters formula depends on an initial function
φ and therefore we state the following definition.

Definition

Let φ(t) be a given bounded and initial function. We say
x(t, τ0, φ) is a solution of (1) if x(t) = φ(t) for t0 ≤ t ≤ τ0 and
x(t, τ0, φ) satisfies (1) for t ≥ τ0.
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New Variation of Parameters

In the next theorem we derive the solution of (1) in term of the
resolvent. The obtained solution is referred to as the new variation
of parameters.

Theorem

(New Variation of parameters) Let φ be a given bounded and
continuous initial function defined on t0 ≤ t ≤ τ0. x(t) is a
solution of (1) if and only if

x(t) = R(t, τ0)φ(τ0) +

∫ t

τ0

R(t, σ(s))

∫ τ0

t0

B(s, u)φ(u)∆u∆s (3)
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Proof

Proof.

Note that

[R(t, s)x(s)]∆ = R(t, σ(s))x∆(s) + R∆s (t, s)x(s). (4)

An integration of (4) from τ0 to t gives

R(t, t)x(t)−R(t, τ0)φ(τ0) =

∫ t

τ0

[R(t, σ(s))x∆(s)+R∆s (t, s)x(s)]∆s.

(5)
Hence, (5) implies that

x(t) = R(t, τ0)φ(τ0) +

∫ t

τ0

[R(t, σ(u))x∆(u) + R∆u(t, u)x(u)]∆u.

(6)
Using (1) into (6) yields
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Proof-Continued

Proof.

x(t) = R(t, τ0)φ(τ0) +

∫ t

τ0

R(t, σ(u))A(u)x(u)∆u (7)

+

∫ t

τ0

R(t, σ(u))

∫ u

t0

B(u, s)x(s)∆s∆u +

∫ t

τ0

R∆u(t, u)x(u)∆u.

Next we consider the third term on the right side of (7). That is∫ t

τ0

R(t, σ(u))

∫ u

t0

B(u, s)x(u)∆s∆u

=

∫ t

τ0

R(t, σ(u))

∫ τ0

t0

B(u, s)φ(s)∆s∆u

+

∫ t

τ0

R(t, σ(u))

∫ u

τ0

B(u, s)x(s)∆s∆u.

By changing the limits of integration, we get
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Proof-Continued

Proof. ∫ t

τ0

R(t, σ(u))

∫ u

τ0

B(u, s)x(s)∆s∆u

=

∫ t

τ0

{∫ t

σ(s)
R(t, σ(u))B(u, s)∆u

}
x(s)∆s.

x(t) = R(t, τ0)φ(τ0) +

∫ t

τ0

R(t, σ(u))

∫ τ0

t0

B(u, s)φ(s)∆s∆u

+

∫ t

τ0

[
R(t, σ(s))A(s)

+

∫ t

σ(s)
R(t, σ(u))B(u, s)∆u + R∆s (t, s)

]
x(s)∆s.

Now the third term on the right is zero due to (2). Interchange s
with u to get (3). This completes the proof.
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Set Up

For x ∈ Rn, |x | denotes the Euclidean norm of x . For any n × n
matrix A, define the norm of A by |A| = sup{|Ax | : |x | ≤ 1}.
C (X ,Y ) denotes the set of continuous functions ϕ : X → Y . Let
C (t) denote the set of continuous functions ϕ : [t0, t]T → Rn and
∥ϕ∥ = sup{|ϕ(s)| : t0 ≤ s ≤ t}. For each τt0 ∈ [t0, t]T and
ϕ ∈ C (τ0), there is a unique function x : [t0, t]T → Rn which
satisfies (1) on [τ0,+∞) with x(s) = ϕ(s) for s ∈ [t0, τ0]T. Such a
function x(t) is called a solution of (1) through (τ0, ϕ) and is
denoted by x(t, τ0, ϕ).

Definition

The zero solution of (1) is stable if for each ε > 0 and each
τ0 ≥ t0, there exists a δ = δ(ε, τ0) > 0 such that
[ϕ ∈ C (τ0), : ∥ϕ∥ < δ] imply |x(t, τ0, ϕ)| < ε for all t ≥ τ0. The
zero solution of (1) is uniformly stable (US) if δ is independent of
τ0.
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Theorem

The proof of the next theorem is long and tedious and can be
found on Page 162 in the book by
Adivar-Raffoul, Stability, Periodicity and Boundedness in
Functional Dynamical Systems on Time Scales, Springer,
2020.

Theorem

The zero solution of (1) is uniformly stable if and only if

sup
t∈[t0,∞)T

{
|R(t, τ0)|+

∫ τ0

t0

∣∣∣ ∫ t

τ0

R(t, σ(s))B(s, u)∆s
∣∣∣∆u

}
< +∞.

(8)
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Corollaries

Corollary

Let R(t, s) be the solution of (2) Then there exists a constant K
such that |R(t, s)| ≤ K for t ≥ s ≥ t0 if and only if

sup
t∈[t0,∞)T

∣∣∣ ∫ t

s
R(t, σ(u))

(
A(u)+

∫ u

σ(s)
B(u, v)∆v

)
∆u

∣∣∣ < +∞ (9)

Corollary

Suppose that

sup
t∈[τ0,∞)T

∫ t

t0

|R(t, σ(s))|
(
|A(s)|+

∫ s

t0

|B(s, u)|∆u
)
∆s < +∞.

Then there exists a constant K such that |R(t, s)| ≤ K for
t ≥ s ≥ t0 and the zero solution of (1) is (US).
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∆ derivative of |x |

In the continuous case one can easily find

d

dt
|x(t)| = x(t)

|x(t)|
x ′(t)

By using the equation x2(t) = |x(t)|2 and the product rule in real
case, we have

|x |∆ =
x + xσ

|x |+ |xσ|
x∆ for x ̸= 0, (10)

since the product rule is changed to (fg)∆ = f ∆gσ + fg∆ in time
scale calculus. That is, the coefficient of x∆ in (10) depends not
only on the sign of x(t) but also on that of xσ(t). Therefore, the
equality |x |∆ = x

|x |x
∆ holds only if xxσ ≥ 0 and x ̸= 0.
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Let us keep this case distinct from the case xxσ < 0 by separating
the time scale T into two parts as follows

T− : = {s ∈ T : x (s) xσ (s) < 0} ,
T+ : = {s ∈ T : x (s) xσ (s) ≥ 0} .

Note that the set T− consists only of right scattered points of T.
To see the relation between |x |∆ and x

|x |x
∆ we state the following

lemma and its proof can be found on Page 14 in the book by
Adivar-Raffoul, Stability, Periodicity and Boundedness in
Functional Dynamical Systems on Time Scales, Springer,
2020.
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Lemma

Lemma

Let x ̸= 0 be ∆-differentiable. Then

|x |∆ =
x

|x |
x∆ for t ∈ T+

and
x

|x |
x∆ ≤ |x |∆ ≤ − x

|x |
x∆ for t ∈ T−. (11)
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Scalar Equation

In this section we apply the result of Theorem 5 and prove
necessary and sufficient conditions for the uniform stability of the
zero solution of the integro-dynamic scalar equation

x∆(t) = a(t)x(t) +

∫ t

t0

b(t, s)x(s)∆s, t ∈ [t0,∞)T. (12)
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Theorem

Theorem

Suppose that a(t) does not change sign. Then the zero solution of
(12) is uniformly stable if and only if there exist a constant K such
that

a(t) + K

∫ σ(t)

t0

|b(t, s)|∆s ≤ 0, (13)

and

min

{
a(s)

(
−1 +

1

K

)
, a(s)

(
1 +

1

K

)}
> 0. (14)
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We make use of the previous Lemma in
V (s) = |R(t, s)|+

∫ t
s

∫ s
t0
|R(t, σ(u))||b(u, v)|∆v∆u.

V∆s (s) = |R(t, s)|∆s −
∫ σ(s)

0
|R(t, σ(s))||b(s, v)|∆v

+

∫ t

s
|R(t, σ(u))||b(u, s)|∆u

≥ R(t, s)

|R(t, s)|
R∆s (t, s)−

∫ σ(s)

0
|R(t, σ(s))||b(s, v)|∆v

+

∫ t

s
|R(t, σ(u))||b(u, s)|∆u

≥ −a(s)
R(t, s)

|R(t, s)|
R(t, σ(s))−

∫ t

σ(s)
|R(t, σ(u))||b(u, s)|∆u

−
∫ σ(s)

0
|R(t, σ(s))||b(s, v)|∆v +

∫ t

s
|R(t, σ(u))||b(u, s)|∆u
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Proof Continued

V∆s (s) ≥ −a(s)
R(t, s)

|R(t, s)|
R(t, σ(s))−

∫ σ(s)

0
|b(s, v)|∆v |R(t, σ(s))|

(15)
where we have used∫ t

s
|R(t, σ(u))||b(u, s)|∆u ≥

∫ t

σ(s)
|R(t, σ(u))||b(u, s)|∆u.

If R(t, s)R(t, σ(s)) ≥ 0, then
R(t, s)R(t, σ(s)) = |R(t, s)||R(t, σ(s))|. As a consequence, we
have from (15) that

V∆s (s) ≥
(
− a(s)−

∫ σ(s)

t0

|b(u, v)|∆v
)
|R(t, σ(s))|

≥ a(s)

(
−1 +

1

K

)
|R(t, σ(s))|, (16)

where we have used (13).
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Proof-Continued

Also, if R(t, s)R(t, σ(s)) ≤ 0, then
R(t, s)R(t, σ(s)) = −|R(t, s)||R(t, σ(s))|. As a consequence, we
have from (15) that

V∆s (s) ≥
(
a(s)−

∫ σ(s)

0
|b(u, v)|∆v

)
|R(t, σ(s))|

≥ a(s)

(
1 +

1

K

)
|R(t, σ(s))|, (17)

where we have used (13), again. Thus, (16) and (17) imply that
V∆s (s) ≥ γ(s)|R(t, σ(s))| where

γ(s) := min

{
a(s)

(
−1 +

1

K

)
, a(s)

(
1 +

1

K

)}
.

This along with (14) yields that for any τ0 with t ≥ τ0,
V (τ0) ≤ V (t) = |R(t, t)| = 1. Thus, (8) is satisfied since

|R(t, τ0)|+
∫ t

τ0

∫ τ0

t0

|R(t, σ(u))||b(u, v)|∆v∆du = V (τ0) ≤ 1.
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Example

Example

Let T = {0, 1, 2...}. Consider the scalar equation

x(t + 1) =
x(t)

2
−

t∑
s=0

x(s)

(s + 1)(s + 2)
, t ∈ {0, 1, 2...} , (18)

which can be expressed in the form of Eq. (12) as follows

∆x(t) = a(t)x(t) +
t−1∑
s=0

b(t, s)x(s)

where ∆x(t) := x(t + 1)− x(t),

a(t) = −1

2
− 1

(t + 1)(t + 2)
, and b(t, s) = − 1

(s + 1)(s + 2)
.
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Example-Continued

Example

If we let K = −1/2, then we have

a(t) + K

∫ σ(t)

t0

|b(t, s)|∆s = −1− 1

(t + 1)(t + 2)
+

1

2(t + 1)
< 0

for t ∈ {0, 1, 2...} and

min
t∈T

{
a(t)

(
−1 +

1

K

)
, a(t)

(
1 +

1

K

)}
=

1

2
+

1

(t + 1)(t + 2)
> 0.

This means conditions (13) and (14) hold and the zero solution of
(18) is uniformly stable by Theorem 5.
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Comparison with Other Published Results

In [Example 3.1] of the paper
Touhid M. Khandaker and Youssef N. Raffoul, Stability
properties of linear Volterra discrete systems with nonlinear
perturbation. J. Difference Equ. Appl., 8(10):857–874,
2002. In honour of Professor Allan Peterson on the occasion
of his 60th birthday the authors ask for the existence of
K ∈ (0, 1) such that

−ã(t) + K

[
1−

t∑
s=0

|b(t, s)|

]
> 0 (19)

in order to show that ∆V (s) := V (s + 1)− V (s) > 0, which is
needed for uniform stability of the zero solution of

x(t + 1) = ã(t)x(t) +
t∑

s=0

b(t, s)x(s).
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Comparison-Conituned

In our previous Example we obtained uniform stability of the zero
solution of (18) even though there is no such K ∈ (0, 1) such that
condition (19) holds. So if we let

ã(t) = 1/2 and b(t, s) = − 1

(s + 1)(s + 2)
,

then

−ã(t) + K

[
1−

t∑
s=0

|b(t, s)|

]
= −1

2
+

K

t + 2
< 0

whenever K ∈ (0, 1) and t ∈ {0, 1, 2...}. Hence condition (19)
does not hold.
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One More Comparison

In [Example 3.1] of the paper
Paul Eloe, Muhammad Islam, and Bo Zhang. Uniform
asymptotic stability in linear Volterra integrodifferential
equations with application to delay systems. Dynam.
Systems Appl., 9(3):331–344, 2000,
the authors considered the scalar equation

x ′(t) = a(t)x(t) +

∫ t

0
b(t, s)x(s)ds,

and the Lyapunov functional

V (s) = |R(t, s)|+
∫ t

s

∫ s

0
|R(t, u)| |b(u, v)| dvdu.
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One More Comparison-Continued

In order to have lim inf
h→0+

1

h
[V (t + h)− V (t)] ≥ 0 they assumed the

existence of a constant K > 1 such that for t ≥ 0

a(t) + K

∫ t

0
|b(t, s)|ds ≤ 0, (20)

The above condition is needed to show uniform stability. We
observe that our conditions (13) and (14) allow K to be negative.
For example if we assume a < 0 and take K = −1

2 , then

min

{
a(s)

(
−1 +

1

K

)
, a(s)

(
1 +

1

K

)}
=

min{−a(s),−3a(s)} = −a(s) > 0.

Therefore, condition (13) is satisfied for any function b(t, s)
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Necessary and Sufficient Conditions by Lyapunov
Functionals

x∆ = A(t)x +

∫ t

0
C (t, s)x(s)∆s, (21)

where A(t) is continuous on t ∈ [0,∞)T and C (t, s) is continuous
on t ∈ [0,∞)T and rd-continuous with respect the second variable
on s ∈ [0,∞)T. We establish necessary and sufficient conditions for
the stability of the zero solution of scalar (21) Volterra
integro-dynamic equation on general time scales. Our approach is
based on the construction of suitable Lyapunov functionals.
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Theorem

Theorem

Suppose C (t, s) is rd-continuous with respect to the second
variable. Let

∫∞
σ(t) |C (u, t)|∆u be continuous for t ∈ [0,∞)T.

Suppose A is a continuous function on [0,∞)T and that there are
constants ν > 1 and α, β > 0 such that

(
1 + µ(t)|A(t)|

) ∫ t

0
|C (t, s)|∆s + µ(t)A2(t)

+ ν

∫ ∞

σ(t)
|C (u, t)|∆u − 2|A(t)| ≤ −α (22)

and

µ(t)
(
|A(t)|+

∫ t

0
|C (t, s)|∆s

)
− (ν − 1) ≤ −β. (23)

Then the zero solution of (21) is stable if and only if A(t) < 0 for
all t ∈ [0,∞)T.

Y. N. Raffoul
Volterra integro-dynamical equations
29 / 49



Proof

Proof.

Let

V (t, x) = x2(t) + ν

∫ t

0

∫ ∞

t
|C (u, s)|∆ux2(s)∆s. (24)

Assume A(t) < 0 for all t ∈ [0,∞)T. We have along the solutions
of (21) that

V̇ (t, x) = 2x(t)
(
A(t)x(t) +

∫ t

0
C (t, s)x(s)∆s

)
+ µ(t)

(
A(t)x(t) +

∫ t

0
C (t, s)x(s)∆s

)2

− ν

∫ t

0
|C (t, s)|x2(s)∆s + ν

∫ ∞

σ(t)
|C (u, t)|x2(t)∆u
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Proof

Proof.

V̇ (t, x) = −2|A(t)|x2(t) + 2x(t)

∫ t

0
C (t, s)x(s)∆s

+ µ(t)
(
A2(t)x2(t) + 2A(t)x(t)

∫ t

0
C (t, s)x(s)∆s

+
( ∫ t

0
C (t, s)x(s)∆s

)2)
− ν

∫ t

0
|C (t, s)|x2(s)∆s + ν

∫ ∞

σ(t)
|C (u, t)|x2(t)∆u. (25)
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Proof-Continued

Proof.

Using the fact that ab ≤ a2/2 + b2/2 for any real numbers a and
b, we have

2

∫ t

0
|C (t, s)| |x(t)||x(s)|∆s ≤

∫ t

0
|C (t, s)|(x2(t) + x2(s))∆s.

Also, using Theorem (Yellow Book Page 16) one obtains(∫ t

0
|C (t, s)|x(s)∆s

)2
=

(∫ t

0
|C (t, s)|1/2|C (t, s)|1/2x(s)∆s

)2

≤
∫ t

0
|C (t, s)|∆s

∫ t

0
|C (t, s)|x2(s)∆s.
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Proof-Continued

A substitution of the above two inequalities into (25) yields

V̇ (t, x) ≤
[(
1 + µ(t)|A(t)|

) ∫ t

0
|C (t, s)|∆s + µ(t)A2(t)

+ ν

∫ ∞

σ(t)
|C (u, t)|∆u − 2|A(t)|

]
x2(t)

+
[
µ(t)

(
|A(t)|+

∫ t

0
|C (t, s)|∆s

)
− (ν − 1)

] ∫ t

0
|C (t, s)|x2(s)∆s

≤ −αx2(t). (26)
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Proof-Continued

Let ε > 0 be given. We will find a δ > 0 so that for any bounded
initial function ϕ : Et0 = [0, t0]T → R with ||ϕ|| < δ, we have
|x(t, t0, ϕ)| < ε. Due to (26), V is decreasing and hence for
t ∈ [0,∞)T we have that

x2 ≤ V (t, x) ≤ V (t0, ϕ)

≤ ||ϕ||2 + ν

∫ t0

0

∫ ∞

t0

|C (u, s)|∆u∆s||ϕ||2

=
(
1 + ν

∫ t0

0

∫ ∞

t0

|C (u, s)|∆u∆s
)
||ϕ||2. (27)

Or,

|x(t, t0, ϕ)| ≤ ε, for δ =
{ ε

1 + ν
∫ t0
0

∫∞
t0

|C (u, s)|∆u∆s

}1/2
.

This proves Uniform Stability
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Proof-Continued

To prove the other part, we assume A(t) > 0 for some t ∈ [0,∞)T.
Define the functional

W (t, x) = x2(t)− ν

∫ t

0

∫ ∞

t
|C (u, s)|∆ux2(s)∆s.

Then along the solutions of (21), we have by a similar argument as
for V that

Ẇ (t, x) ≥
[
2A(t)−

(
1 + µ(t)|A(t)|

) ∫ t

0
|C (t, s)|∆s − µ(t)A2(t)

− ν

∫ ∞

σ(t)
|C (u, t)|∆u

]
x2(t)

+
[
(ν − 1)− µ(t)

(
|A(t)|+

∫ t

0
|C (t, s)|∆s

)] ∫ t

0
|C (t, s)|x2(s)∆s

≥ αx2(t).
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Proof-Continued

Given any t0 ≥ 0 and any δ > 0, we can find a continuous function
ϕ : Et0 → R with ||ϕ|| < δ with ||ϕ|| < δ, and W (t0, ϕ) > 0 so that
if we have x(t) = x(t, t0, ϕ) is a solution of (21), then we have

x2(t) ≥ W (t, x) ≥ W (t0, ϕ) + α

∫ t

t0

W (t0, ϕ)∆s

= W (t0, ϕ) + αW (t0, ϕ)(t − t0).

As t → ∞, |x(t)| → ∞, which is a contradiction.
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Remark

Remark

When T = R, condition (23) becomes unnecessary if we take
ν = 1 and condition (22) reduces to∫ t

0
|C (t, s)|ds +

∫ ∞

t
|C (u, t)|du − 2|A(t)| ≤ −α.
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Corollary

Corollary

Assume (22) and (23) hold with A(t) < 0 and A(t) is bounded for
all t ∈ [0,∞)T. Then,
a) x2(t) is bounded,
b) x2(t) ∈ L2

(
[0,∞)T

)
,

c) x∆(t) is bounded,
and
d) the zero solution of (21) is (AS).
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Theorem

Theorem

Consider (21) with A(t) ≤ 0 for all t ∈ [0,∞)T. Assume

|A(s)| −
∫ t

σ(s)
|C (u, s)|∆u ≥ 0, for s ∈ [0,∞)T. (28)

Then the zero solution of (21) is stable. Moreover, if there exists a
t2 ≥ 0 and an α > 0 with

|A(s)| −
∫ t

σ(s)
|C (u, s)|∆u ≥ α, for s ∈ [t2,∞)T,

and if both

∫ t

0
C (t, s)∆s and A(t) are bounded, then x = 0 is

(AS).
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Application to q-difference Equations

Let T = qN = {qn : n ∈ N and q > 1}. On this time scale (21)
takes the form

Dqx(t) = A(t)x(t) +
∑

s∈[1,t)
qN

µq(s)C (t, s)x(s)), t ≥ 1 (29)

where [1, t)qN = [1, t) ∩ qN;

µq(s) := (q − 1)s;

Dqφ(t) =
φ(qt)− φ(t)

µq(t)
, t ∈ qN;
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Application-Continued

and C : [1,∞)qN × [1,∞)qN → R is continuous function for
1 ≤ s ≤ t < ∞, and A : [1,∞)qN → R is also continuous.

Let A(t) = − q

t3
− t + 1

t
, C (t, s) =

1

t2s2
, for (t, s) ∈

[1,∞)qN × [1,∞)qN . Let t = qn. Since,

−
∫ t

σ(s)
|C (u, s)|∆u ≥ −

∫ t

1
|C (u, s)|∆u

we have that

Y. N. Raffoul
Volterra integro-dynamical equations
41 / 49



Application-Continued

∫ t

1
|C (u, s)|∆u =

1

s2
{ qn∫

1

1

u2
dqu

}

=
{ q∫
q0

1

u2
dqu +

q2∫
q

1

u2
dqu +

q3∫
q2

1

u2
dqu + . . .+

qn∫
qn−1

1

u2
dqu

}

=
1

s2

n−1∑
k=0

σ(qk )∫
qk

1

u2
dqu

=
1

s2

n−1∑
k=0

µ(qk)
1

q2k
=

1

s2

n−1∑
k=0

(q − 1) qk
1

q2k

≤ 1

s2
(q − 1)

∞∑
k=0

1

qk
=

1

s2
q.
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Application-Continued

Thus,

|A(s)| −
∫ t

σ(s)
|C (u, s)|∆u ≥ 1

s2
q +

s + 1

s
− 1

s2
q ≥ 1.

All the conditions of the previous Theorem are satisfied with
t2 = 1,(based on the definition of stability that we considered)
which implies that the zero solution of (29) is (AS).
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Theorem-Comparison

Theorem (Adivar-Raffoul(mentioned previousely) Theorem 5.2)

Suppose that A(t) does not change sign. Then the zero solution of
(21) is uniformly stable if and only if there exists a constant K
such that

A(t) + K

∫ σ(t)

t0

|C (t, s)|∆s ≤ 0, (30)

and

min

{
A(s)

(
−1 +

1

K

)
,A(s)

(
1 +

1

K

)}
> 0. (31)
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Comparison

Suppose A(t) < 0 for all t ∈ [0,∞)T. Then from our condition
(28) we have that K = 1. As a consequence, condition (31) can
not hold since

min

{
A(s)

(
−1 +

1

K

)
,A(s)

(
1 +

1

K

)}
= 0.
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Comparison

In Example 2.3 of the previously mentioned paper by (Eloe, Islam
and Zhang,) when T = R, the authors considered (21) and
assumed the existence of a constant K > 1 such that for t ≥ 0

A(t) + K

∫ t

0
|C (t, s)|ds ≤ 0, (32)

The above condition is needed to show uniform stability. Condition
(32) imposes size limitation on |C (t, s)|. Precisely, we must have∫ t

0
|C (t, s)|ds ≤ − 1

K
A(t) =

1

K
|A(t)|, for K > 1.

On the other hand, our condition (28) is less restrictive since it
asks for ∫ t

0
|C (t, s)|ds ≤ |A(t)|.
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Open Problems

In the spirit of this talk, what can be said about the asymptotic
stability of the zero solution of the scalar Volterra integro-dynamic
equation

x∆ = A(t)x +

∫ t

0
C (t, s)x(s)∆s.
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Thank You

THANK YOU
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