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In a queuing system of a single server, aiming to handle a hybrid vacation, operating within
a finite space, and taking account of Bernoulli feedback and balking, alongside reneging and
retention. In case of queue emptiness, coming after a normal busy period, the single server makes
a shift to a working vacation. The server proceeds to take a vacation in case no customers are
queued upon the server’s return from a working vacation. For analysis purposes, we employed
a recursive method to derive the system’s steady-state probabilities, thereby facilitating the
evaluation of key performance metrics. Lastly, the Grey Wolf Optimizer is applied to identify

the optimal service rates that minimize costs.

I. Introduction

Queueing systems with server vacations have attracted considerable attention due to their applications in computer,
manufacturing, service, and communication networks. Early works mainly studied complete vacation models, while
later studies introduced the concept of working vacations, where the server continues to serve customers but at a lower
rate.

In addition, customer impatience (balking and reneging) has become a central aspect of modern queueing theory,
reflecting realistic behaviors in areas such as call centers, healthcare, and online services. Recent research has also
investigated feedback mechanisms, where dissatisfied customers may rejoin the system.

However, despite these advances, few studies have simultaneously integrated hybrid vacations, feedback, balking,
reneging, and retention in a single unified framework. This motivates the present work.

We propose and analyze an M /M /1/K queue with hybrid vacations (combining working and complete vacations),
customer impatience, and Bernoulli feedback. Using recursive techniques, we derive steady-state probabilities and
evaluate key performance measures. Furthermore, a cost optimization problem is formulated and solved using the Grey

Wolf Optimizer (GWO), providing optimal service rates under varying system conditions.
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This integrated model contributes to the literature by offering a more realistic and comprehensive representation of

queueing systems, while also addressing practical concerns of service efficiency and cost minimization.

I1. Steady-state Solution

We will now examine the bi-variate process {(L(t), S(¢)), t = 0}, where L(t) represents customers roster in the

system at time #, and S(¢) is the server’s status at time ¢, which can take one of three values, such as S(¢) = 0 : when the

servers are in normal busy period at time ¢, S(¢) = 1 when the server is in a working vacation period at time 7, and S(#) = 2:

when the server is on vacation at time 7. The combined probability Py ; = tlim P{L(t) =k, S(t) =j, (k,j) € Q},

denotes the steady-state probabilities of the system.

where

(k,j) e {{(k,0): k=1,...,K}yU{(k,1): k=0,...,K} U{(k,2) : k=0,...,K}}. Figure[I|illustrates the transitions

in the model represented by a diagram. Using the principle of balance equations

C

A AR ABya
OEENC EEEEES GO RN CD
als 2al, Kalz
n n n n
B4 ABxa
Jde A (“D - - T T T = *“LD QD
N® Bt 200, Bug+ Kady
v v v v
A APy ABi
RO RN RN CS
B+ aly O+ 2al; B, + Kaly

Fig. 1 State transition diagram.
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2<k<K-1, )
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(AB1+7y + 0y +2a81)P11 = APy 1 + (O +2a1) P21, k=1, )

(ABx +y +0uy + kal1)Pi,1 = APr-1Pr-1,1 + (Opw + (n+ D)ald1) Prs 1,

(6)

2<k<K-1,
(v +0uw + Kal1)Pk 1 = APx-1Pk-1,1, k=K, @)
APyo = yPo 1 +aloPp, k=0, 8)
(AB1+alr +n)P12 = APo2 +2a 2P, k=1, )
(ABr + kaly + M) Prp = APr-1Pr-12+ (k+ 1)aloPrsrp, 2<k <K -1, (10)
(n+Kal2)Pk 2= APk-1Pk-12, k=K. (1D

The normalizing condition is .

D (Pro+Pei+Pia) = 1. (12)

k=0

Presented below is the theorem outlining the solution to the above equations. The probabilities describing the system
size in different operational periods, namely the vacation period (P i), working vacation period (P i), and regular

busy period (P i), in the steady-state are respectively expressed as follows:

Py =Ty Pk,
K K -1 (13)
=Ty Z(Qzlﬁk —¢r) + Z(Ql5k +1%)
k=1 =0
P 1= 010kPk . (14)
Pro = (02¢k — ¢1) Pk 2, (15)
where
1, k=K,
Kal+n k=K-1
ro=q % (16)
/lﬁk+1+(/]l€;i)(l[2+771—*k+l _ (k-l;l?]:l{z i, 0<k<K-2,




1, k=K,

y+ouw+Kad k=k—-1
Sk = ABK -1 (17)

ﬂﬁk+l+y+gfﬁ‘i+(k+l)a§] ksl — 9uw+fl;<3:2)a{1 Sks2, 0<k<K-=2,

Ay — a LTl
o1 = 0—4’21. (18)
Ydo
1, k=K,
Oup+Kadp —
APr-1 k=K-1,

Vi =

/lﬁk+l+9/jlhﬁ‘:(k+1)a/§0 Wiel — Gﬂh+£ll;):2)a{o Uisa, 1<k<K-2,

0, k=K,
={ n+vo v
¢k m’ k _ K 1,
414y 01 6ks1 _
B , 0<k<K-=-2,
0, = 0001(A+7y) = 01(0py + aly)or + d1(Oup + ado) (19)
Y1 (Oup + alp) '
and
K K -1
Pk, = Z(szk —¢k)+Z(915k+Fk) . (20)
k=1 k=0

by solving equations recursively (9) — (TI), we find Py » = I't Pk 2, such that represent I'. by equations (3)) — (7).
we get Pi.1 = 6;Pk.1, such that represent §;. We use equation (§)) and we obtain — (T8). Via equations
— (B). we obtain Py  in terms of Pk o and Pk ». Using (@), we can obtain Py g in terms of Pk , that is given by



(T5). Finally, by applying the normalization condition we derive equation (20).

I11. Performance measures
> The probabilities associated with different server states—normal busy period, working vacation, and vacation—are

defined as follows:

K
Py, = PK,2Z(92¢’1<—¢k)-
=l

K
Pyy = QlPK,zzék-
k=0
K
Py = Pxs ) Tk
k=0

> The expressions for the expected number of customers in the system (L) and in the queue (L) are defined as follows:

L k(Pr,o+ Pr1+ Pro)
k=e @ ¢ (21)
Lg=Pgp (02kii — ki + 01kor + kIy) | .
=l

K K
Ly = Z(k = 1)(Pro+ Pr,1) + Z kPr2)
=i =1 22)

K
D 020k = Dy = (k = Dy + 01 (k = 1)3x +KTx)
k=1

Ly =Pk,

> The expected balking rate:

K
B, =2 Z(l = Bi)(Pk,0 + Pi,1 + P 2)
k=L (23)
By = APk 2 | ) (02f ¥k = By + 0185k + B Tw)
k=c

> The expressions for the expected waiting time of customers in the system (W) and in the queue (W,,) are given by:

“

q

L ,
Wy =—, where A =1-B,, W, =—. (24)
A A
> The expression for E s (expected number of customers served per time unit) is given by:
K K
Ecs = pp0 ) kPon+ w0 ) kP, (25)

k=1 k=1



> The expected reneging rate:

K K K

R, =alo Z kPyo+ady Z kPi1+al> Z kP> i
o k=1 =1
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> The expected retention rate:

K K K
Ri=a'ly ) kPeo+ali Y kPii+als )y kPox
k=1 k=1 k=1

K
R, =a Pg, (Loo2kic — Lok i + £1©1kdk)
p= 27)
K
+O{IDK;2 éé :E: klﬂk .
k=1

A. Numerical cost optimum

This subsection seeks the minimization of the total cost expected to be incurred by the system. Concretely using an
evaluation of the cost function A based on the parameters yp and u,,.

Due to the complexity and significant non-linearity of optimization problems, analytical solutions are often
challenging to obtain. However, by utilizing suitable nonlinear optimization techniques, we can derive optimal solutions
in the cost model. In this instance, we define the parameters and apply the grey wolf optimizer algorithm to obtain the

ok

optimal values (u}, u;,) for the service rates. We write the problem designed to optimize:

#rgl’i#nw A(pp, pw)
Mb — pw >0,
Sty >0,
(b, piw) € RS
To proceed with analyzing the cost optimization of the queueing model, we firstly set the parameters regulating the cost:
C, =380,C, =60,C,y,, =70,C; =55,C, =30,C; =15,Cy;, =3,Cp, =2,Cr =7,Co = 3.

- Fromm the minimum expected cost is seen to increase when A increases. Nevertheless, when the vacation rate is

on the rise the minimum expected cost is dropping. This confirms that reducing the vacation rate is a costly endeavor.



Table 1 The optimal (uj, i5,) and A*(u;, u3,) for various values of 1 and 7, whena =6:1:8,K =12, =0.7,
0=0.6,y=2,1n=1[2;2.5;3],6=09,& =1.6,& =1.9.

n 1 K, Hyy A (1, 13,,)
6 10.5074 2.1155 274.9516
2 7 11.8579 3.5971 304.1049
8 13.1917 5.1614 332.3367
6 10.7098 2.5624 273.0545
25 7 12.0748 4.1477 302.0183
8 13.4340 5.7542 330.1020
6 10.8870 2.9701 271.6902
3 7 12.2621 4.6054 300.4876
8 13.6206 6.1863 328.4362

Table 2 The optimal (u;,u;,) and A*(uj, uy,) for various value of 6, when 1 = 6.5, K = 12, a = 0.7,
0 =1[04;0.6;0.8],y=2,n=3,£=09,& =1.6,& =1.9.

6 My, Hyy A (1, 13,,)
0.4 13.7709 2.1155 344.1649
0.6 11.5769 3.7784 286.2084
0.8 10.7260 7.7133 238.7107

Table 3 The optimal (u;, u;,) and A*(u;, uy,) for various value of y, when 4 = 6.5, K = 12, @ = 0.7, 6 = 0.6,
v=1[1.5;2;2.5],1=3,6=0.9,& =1.6,& = 1.9.

Y H, Hyy A (uy, 13,,)
15 11.3372 7.0923 292.0922
2 11.5757 3.7884 286.2084
25 11.8271 2.1155 278.8619

Table 4 The optimal (u;, ) and A™(uj, uy,) for various value of y, when 1 = 6.5, K = 12, @ = [0.7], 6 = 0.6,
Y=21=3,§6=09&6=16,&=1.9.

@ 7 Hyy A (5 13,,)
0.3 13.1045 5.5258 297.005
0.5 12.3133 4.6534 291.4246
0.7 11.5754 3.7850 286.2048

— From E}EFL we observe that with the leap of 0, there is a diminution in the minimum expected cost, and it can also
be seen that a drop of the optimal anticipated cost with the hike of y and @. This means that reducing the working

vacation time, feedback probability, and retention probability results in additional cost savings.



IV. Conclusion

Our modest paper examines a queue of M /M /1/K model including Bernoulli feedback under a hybrid vacation

policy scenario with impatient customers. Employing a recursive method, steady-state probabilities were derived, and

metrics were formulated to assess the system’s performance. In addition, numerical solutions were achieved through the

implementation of the Grey Wolf Optimizer to ensure optimizing the rates of the services and minimizing the function

that expresses the expected cost. Finally, experimental computation results were used to emphasize the effects of several

parameters on (uj, uy,) and A(uy, py,,)-
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