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In a queuing system of a single server, aiming to handle a hybrid vacation, operating within

a finite space, and taking account of Bernoulli feedback and balking, alongside reneging and

retention. In case of queue emptiness, coming after a normal busy period, the single server makes

a shift to a working vacation. The server proceeds to take a vacation in case no customers are

queued upon the server’s return from a working vacation. For analysis purposes, we employed

a recursive method to derive the system’s steady-state probabilities, thereby facilitating the

evaluation of key performance metrics. Lastly, the Grey Wolf Optimizer is applied to identify

the optimal service rates that minimize costs.

I. Introduction
Queueing systems with server vacations have attracted considerable attention due to their applications in computer,

manufacturing, service, and communication networks. Early works mainly studied complete vacation models, while

later studies introduced the concept of working vacations, where the server continues to serve customers but at a lower

rate.

In addition, customer impatience (balking and reneging) has become a central aspect of modern queueing theory,

reflecting realistic behaviors in areas such as call centers, healthcare, and online services. Recent research has also

investigated feedback mechanisms, where dissatisfied customers may rejoin the system.

However, despite these advances, few studies have simultaneously integrated hybrid vacations, feedback, balking,

reneging, and retention in a single unified framework. This motivates the present work.

We propose and analyze an 𝑀/𝑀/1/𝐾 queue with hybrid vacations (combining working and complete vacations),

customer impatience, and Bernoulli feedback. Using recursive techniques, we derive steady-state probabilities and

evaluate key performance measures. Furthermore, a cost optimization problem is formulated and solved using the Grey

Wolf Optimizer (GWO), providing optimal service rates under varying system conditions.
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This integrated model contributes to the literature by offering a more realistic and comprehensive representation of

queueing systems, while also addressing practical concerns of service efficiency and cost minimization.

II. Steady-state Solution
We will now examine the bi-variate process {(𝐿 (𝑡), 𝑆(𝑡)), 𝑡 ≥ 0}, where 𝐿 (𝑡) represents customers roster in the

system at time 𝑡, and 𝑆(𝑡) is the server’s status at time 𝑡, which can take one of three values, such as 𝑆(𝑡) = 0 : when the

servers are in normal busy period at time 𝑡, 𝑆(𝑡) = 1 when the server is in a working vacation period at time 𝑡, and 𝑆(𝑡) = 2:

when the server is on vacation at time 𝑡. The combined probability 𝑃𝑘, 𝑗 = lim
𝑡→∞

𝑃{𝐿 (𝑡) = 𝑘, 𝑆(𝑡) = 𝑗 , (𝑘, 𝑗) ∈ Ω},

denotes the steady-state probabilities of the system.

where

(𝑘, 𝑗) ∈ {{(𝑘, 0) : 𝑘 = 1, ..., 𝐾} ∪ {(𝑘, 1) : 𝑘 = 0, ..., 𝐾} ∪ {(𝑘, 2) : 𝑘 = 0, ..., 𝐾}}. Figure 1 illustrates the transitions

in the model represented by a diagram. Using the principle of balance equations

Fig. 1 State transition diagram.

(𝜆𝛽1 + 𝜇𝑏𝜃 + 𝛼𝜁0)𝑃1,0 = (𝜃𝜇𝑏 + 2𝛼𝜁0)𝑃2,0 + 𝜂𝑃1,2 + 𝛾𝑃1,1, 𝑘 = 1, (1)

(𝜆𝛽𝑘 + 𝜃𝜇𝑏 + 𝑘𝜁0)𝑃𝑘,0 = 𝜆𝛽𝑘−1𝑃𝑘−1,0 + (𝜃𝜇𝑏 + (𝑘 + 1)𝛼𝜁0)𝑃𝑘+1,0 + 𝜂𝑃𝑘,2 + 𝛾𝑃𝑘,1,

2 ≤ 𝑘 ≤ 𝐾 − 1, (2)

(𝜃𝜇𝑏 + 𝐾𝛼𝜁0)𝑃𝐾,0 = 𝜆𝛽𝑘−1𝑃𝑘−1,0 + 𝜂𝑃𝐾,2 + 𝛾𝑃𝐾,1, 𝑘 = 𝐾, (3)

(𝜆 + 𝛾)𝑃0,1 = (𝜃𝜇𝑏 + 𝛼𝜁)𝑃1,1 + (𝜃𝜇𝑏 + 𝛼𝜁0)𝑃1,0, 𝑘 = 0, (4)
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(𝜆𝛽1 + 𝛾 + 𝜃𝜇𝑤 + 2𝛼𝜁1)𝑃1,1 = 𝜆𝑃0,1 + (𝜃𝜇𝑤 + 2𝛼𝜁1)𝑃2,1, 𝑘 = 1, (5)

(𝜆𝛽𝑘 + 𝛾 + 𝜃𝜇𝑤 + 𝑘𝛼𝜁1)𝑃𝑘,1 = 𝜆𝛽𝑘−1𝑃𝑘−1,1 + (𝜃𝜇𝑤 + (𝑛 + 1)𝛼𝜁1)𝑃𝑘+1,1,

2 ≤ 𝑘 ≤ 𝐾 − 1,
(6)

(𝛾 + 𝜃𝜇𝑤 + 𝐾𝛼𝜁1)𝑃𝐾,1 = 𝜆𝛽𝐾−1𝑃𝐾−1,1, 𝑘 = 𝐾, (7)

𝜆𝑃0,2 = 𝛾𝑃0,1 + 𝛼𝜁2𝑃1,2, 𝑘 = 0, (8)

(𝜆𝛽1 + 𝛼𝜁2 + 𝜂)𝑃1,2 = 𝜆𝑃0,2 + 2𝛼𝜁2𝑃2,2, 𝑘 = 1, (9)

(𝜆𝛽𝑘 + 𝑘𝛼𝜁2 + 𝜂)𝑃𝑘,2 = 𝜆𝛽𝑘−1𝑃𝑘−1,2 + (𝑘 + 1)𝛼𝜁2𝑃𝑘+1,2, 2 ≤ 𝑘 ≤ 𝐾 − 1, (10)

(𝜂 + 𝐾𝛼𝜁2)𝑃𝐾,2 = 𝜆𝛽𝐾−1𝑃𝐾−1,2, 𝑘 = 𝐾. (11)

The normalizing condition is
𝐾∑︁
𝑘=0

(
𝑃𝑘,0 + 𝑃𝑘,1 + 𝑃𝑘,2

)
= 1. (12)

Presented below is the theorem outlining the solution to the above equations. The probabilities describing the system

size in different operational periods, namely the vacation period (𝑃2,𝑘), working vacation period (𝑃1,𝑘), and regular

busy period (𝑃0,𝑘), in the steady-state are respectively expressed as follows:

𝑃𝑘,2 = Γ𝑘𝑃𝐾,2,

= Γ𝑘

(
𝐾∑︁
𝑘=1

(𝜚2𝜓𝑘 − 𝜙𝑘) +
𝐾∑︁
𝑘=0

(𝜚1𝛿𝑘 + Γ𝑘)
)−1

.

(13)

𝑃𝑘,1 = 𝜚1𝛿𝑘𝑃𝐾,2. (14)

𝑃𝑘,0 = (𝜚2𝜓𝑘 − 𝜙𝑘)𝑃𝐾,2, (15)

where

Γ𝑘 =



1, 𝑘 = 𝐾,

𝐾𝛼𝜁2+𝜂
𝜆𝛽𝐾−1

, 𝑘 = 𝐾 − 1,

𝜆𝛽𝑘+1+(𝑘+1)𝛼𝜁2+𝜂
𝜆𝛽𝑘

Γ𝑘+1 − (𝑘+2)𝛼𝜁2
𝜆𝛽𝑘

Γ𝑘+2, 0 ≤ 𝑘 < 𝐾 − 2,

(16)
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𝛿𝑘 =



1, 𝑘 = 𝐾,

𝛾+𝜃𝜇𝑤+𝐾𝛼𝜁1
𝜆𝛽𝐾−1

, 𝑘 = 𝑘 − 1,

𝜆𝛽𝑘+1+𝛾+𝜃𝜇𝑤+(𝑘+1)𝛼𝜁1
𝜆𝛽𝑘

𝛿𝑘+1 − 𝜃𝜇𝑤+(𝑘+2)𝛼𝜁1
𝜆𝛽𝑘

𝛿𝑘+2, 0 ≤ 𝑘 < 𝐾 − 2,

(17)

𝜚1 =
𝜆Γ0 − 𝛼𝜁2Γ1

𝛾𝛿0
. (18)

𝜓𝑘 =



1, 𝑘 = 𝐾,

𝜃𝜇𝑏+𝐾𝛼𝜁0
𝜆𝛽𝐾−1

, 𝑘 = 𝐾 − 1,

𝜆𝛽𝑘+1+𝜃𝜇𝑏+(𝑘+1)𝛼𝜁0
𝜆𝛽𝑘

𝜓𝑘+1 − 𝜃𝜇𝑏+(𝑘+2)𝛼𝜁0
𝜆𝛽𝑘

𝜓𝑘+2, 1 ≤ 𝑘 < 𝐾 − 2,

𝜙𝑘 =



0, 𝑘 = 𝐾,

𝜂+𝛾 𝜚1
𝜆𝛽𝐾−1

, 𝑘 = 𝐾 − 1,

𝜂Γ𝑘+1+𝛾 𝜚1 𝛿𝑘+1
𝜆𝛽𝑘

, 0 ≤ 𝑘 < 𝐾 − 2,

Θ2 =
𝛿0𝜚1 (𝜆 + 𝛾) − 𝛿1 (𝜃𝜇𝑤 + 𝛼𝜁1)𝜚1 + 𝜙1 (𝜃𝜇𝑏 + 𝛼𝜁0)

𝜓1 (𝜃𝜇𝑏 + 𝛼𝜁0)
, (19)

and

𝑃𝐾,2 =

(
𝐾∑︁
𝑘=1

(𝜚2𝜓𝑘 − 𝜙𝑘) +
𝐾∑︁
𝑘=0

(𝜚1𝛿𝑘 + Γ𝑘)
)−1

. (20)

by solving equations recursively (9) − (11), we find 𝑃𝑘,2 = Γ𝑘𝑃𝐾,2, such that (16) represent Γ𝑘 . by equations (5) − (7),

we get 𝑃𝑘,1 = 𝛿𝑘𝑃𝐾,1, such that (17) represent 𝛿𝑘 . We use equation (8) and we obtain (14) − (18). Via equations

(2) − (3), we obtain 𝑃𝑘,0 in terms of 𝑃𝐾,0 and 𝑃𝐾,2. Using (4), we can obtain 𝑃𝑘,0 in terms of 𝑃𝐾,2 that is given by
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(15). Finally, by applying the normalization condition we derive equation (20).

III. Performance measures
⊲ The probabilities associated with different server states–normal busy period, working vacation, and vacation–are

defined as follows:

𝑃𝑏 = 𝑃𝐾,2

𝐾∑︁
𝑘=1

(𝜚2𝜓𝑘 − 𝜙𝑘).

𝑃𝑤𝑣 = 𝜚1𝑃𝐾,2

𝐾∑︁
𝑘=0

𝛿𝑘 .

𝑃𝑣 = 𝑃𝐾,2

𝐾∑︁
𝑘=0

Γ𝑘 .

⊲ The expressions for the expected number of customers in the system (𝐿𝑠) and in the queue (𝐿𝑞) are defined as follows:

𝐿𝑠 =

𝑘∑︁
𝑘=𝑐

𝑘 (𝑃𝑘,0 + 𝑃𝑘,1 + 𝑃𝑘,2)

𝐿𝑠 = 𝑃𝐾,2

[
𝐾∑︁
𝑘=1

(𝜚2𝑘𝜓𝑘 − 𝑘𝜙𝑘 + 𝜚1𝑘𝛿𝑘 + 𝑘Γ𝑘)
]
.

(21)

𝐿𝑞 =

𝐾∑︁
𝑘=1

(𝑘 − 1) (𝑃𝑘,0 + 𝑃𝑘,1) +
𝐾∑︁
𝑘=1

𝑘𝑃𝑘,2)

𝐿𝑞 = 𝑃𝐾,2

[
𝐾∑︁
𝑘=1

(𝜚2 (𝑘 − 1)𝜓𝑘 − (𝑘 − 1)𝜙𝑘 + 𝜚1 (𝑘 − 1)𝛿𝑘 + 𝑘Γ𝑘)
]
.

(22)

⊲ The expected balking rate:

𝐵𝑟 = 𝜆

𝐾∑︁
𝑘=1

(1 − 𝛽𝑘) (𝑃𝑘,0 + 𝑃𝑘,1 + 𝑃𝑘,2)

𝐵𝑟 = 𝜆𝑃𝐾,2

[
𝐾∑︁
𝑘=𝑐

(𝜚2𝛽
′

𝑘𝜓𝑘 − 𝛽
′

𝑘𝜙𝑘 + 𝜚1𝛽
′

𝑘𝛿𝑘 + 𝛽
′

𝑘Γ𝑘)
]
.

(23)

⊲ The expressions for the expected waiting time of customers in the system (𝑊𝑠) and in the queue (𝑊𝑞) are given by:

𝑊𝑠 =
𝐿𝑠

𝜆
′ , where 𝜆

′
= 𝜆 − 𝐵𝑟 , 𝑊𝑞 =

𝐿𝑞

𝜆
′ . (24)

⊲ The expression for 𝐸𝑐𝑠 (expected number of customers served per time unit) is given by:

𝐸𝑐𝑠 = 𝜇𝑏𝜃

𝐾∑︁
𝑘=1

𝑘𝑃0,𝑛 + 𝜇𝑤𝜃
𝐾∑︁
𝑘=1

𝑘𝑃1,𝑛 (25)
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⊲ The expected reneging rate:

𝑅𝑟 = 𝛼𝜁0

𝐾∑︁
𝑘=1

𝑘𝑃𝑘,0 + 𝛼𝜁1

𝐾∑︁
𝑘=1

𝑘𝑃𝑘,1 + 𝛼𝜁2

𝐾∑︁
𝑘=1

𝑘𝑃2,𝑘

𝑅𝑟 = 𝛼𝑃𝐾,2

[
𝐾∑︁
𝑘=1

(𝜁0𝜚2𝑘𝜓𝑘 − 𝜁0𝑘𝜙𝑘 + 𝜁1Θ1𝑘𝛿𝑘)
]

+𝛼𝑃𝐾,2

[
𝜁2

𝐾∑︁
𝑘=1

𝑘Γ𝑘

]
.

(26)

⊲ The expected retention rate:

𝑅𝑡 = 𝛼
′
𝜁0

𝐾∑︁
𝑘=1

𝑘𝑃𝑘,0 + 𝛼𝜁1

𝐾∑︁
𝑘=1

𝑘𝑃𝑘,1 + 𝛼𝜁2

𝐾∑︁
𝑘=1

𝑘𝑃2,𝑘

𝑅𝑡 = 𝛼
′
𝑃𝐾,2

[
𝐾∑︁
𝑘=1

(𝜁0𝜚2𝑘𝜓𝑘 − 𝜁0𝑘𝜙𝑘 + 𝜁1Θ1𝑘𝛿𝑘)
]

+𝛼′
𝑃𝐾,2

[
𝜁2

𝐾∑︁
𝑘=1

𝑘Γ𝑘

]
.

(27)

A. Numerical cost optimum

This subsection seeks the minimization of the total cost expected to be incurred by the system. Concretely using an

evaluation of the cost function Λ based on the parameters 𝜇𝑏 and 𝜇𝑤 .

Due to the complexity and significant non-linearity of optimization problems, analytical solutions are often

challenging to obtain. However, by utilizing suitable nonlinear optimization techniques, we can derive optimal solutions

in the cost model. In this instance, we define the parameters and apply the grey wolf optimizer algorithm to obtain the

optimal values (𝑢∗
𝑏
, 𝑢∗𝑤) for the service rates. We write the problem designed to optimize:

min
𝜇𝑏 ,𝜇𝑤

Λ(𝜇𝑏, 𝜇𝑤)

s.t



𝜇𝑏 − 𝜇𝑤 > 0,

𝜇𝑤 > 0,

(𝜇𝑏, 𝜇𝑤) ∈ R2
+.

To proceed with analyzing the cost optimization of the queueing model, we firstly set the parameters regulating the cost:

𝐶𝑏 = 80, 𝐶𝑣 = 60, 𝐶𝑤𝑣 = 70, 𝐶𝑞 = 55, 𝐶𝑟 = 30, 𝐶𝑡 = 15, 𝐶𝜇𝑏 = 3, 𝐶𝜇𝑤 = 2, 𝐶 𝑓 = 7, 𝐶𝑎 = 3.

− From 1, the minimum expected cost is seen to increase when 𝜆 increases. Nevertheless, when the vacation rate is

on the rise the minimum expected cost is dropping. This confirms that reducing the vacation rate is a costly endeavor.
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Table 1 The optimal (𝜇∗
𝑏
, 𝜇∗𝑤) and Λ∗ (𝜇∗

𝑏
, 𝜇∗𝑤) for various values of 𝜆 and 𝜂, when 𝛼 = 6 : 1 : 8, 𝐾 = 12, 𝛼 = 0.7,

𝜃 = 0.6, 𝛾 = 2, 𝜂 = [2; 2.5; 3], 𝜉0 = 0.9, 𝜉1 = 1.6, 𝜉2 = 1.9.

𝜂 𝜆 𝜇∗
𝑏

𝜇∗𝑤 Λ∗ (𝜇∗
𝑏
, 𝜇∗𝑤)

6 10.5074 2.1155 274.9516
2 7 11.8579 3.5971 304.1049

8 13.1917 5.1614 332.3367
6 10.7098 2.5624 273.0545

2.5 7 12.0748 4.1477 302.0183
8 13.4340 5.7542 330.1020
6 10.8870 2.9701 271.6902

3 7 12.2621 4.6054 300.4876
8 13.6206 6.1863 328.4362

Table 2 The optimal (𝜇∗
𝑏
, 𝜇∗𝑤) and Λ∗ (𝜇∗

𝑏
, 𝜇∗𝑤) for various value of 𝜃, when 𝜆 = 6.5, 𝐾 = 12, 𝛼 = 0.7,

𝜃 = [0.4; 0.6; 0.8], 𝛾 = 2, 𝜂 = 3, 𝜉0 = 0.9, 𝜉1 = 1.6, 𝜉2 = 1.9.

𝜃 𝜇∗
𝑏

𝜇∗𝑤 Λ∗ (𝜇∗
𝑏
, 𝜇∗𝑤)

0.4 13.7709 2.1155 344.1649
0.6 11.5769 3.7784 286.2084
0.8 10.7260 7.7133 238.7107

Table 3 The optimal (𝜇∗
𝑏
, 𝜇∗𝑤) and Λ∗ (𝜇∗

𝑏
, 𝜇∗𝑤) for various value of 𝛾, when 𝜆 = 6.5, 𝐾 = 12, 𝛼 = 0.7, 𝜃 = 0.6,

𝛾 = [1.5; 2; 2.5], 𝜂 = 3, 𝜉0 = 0.9, 𝜉1 = 1.6, 𝜉2 = 1.9.

𝛾 𝜇∗
𝑏

𝜇∗𝑤 Λ∗ (𝜇∗
𝑏
, 𝜇∗𝑤)

1.5 11.3372 7.0923 292.0922
2 11.5757 3.7884 286.2084
2.5 11.8271 2.1155 278.8619

Table 4 The optimal (𝜇∗
𝑏
, 𝜇∗𝑤) and Λ∗ (𝜇∗

𝑏
, 𝜇∗𝑤) for various value of 𝛾, when 𝜆 = 6.5, 𝐾 = 12, 𝛼 = [0.7], 𝜃 = 0.6,

𝛾 = 2, 𝜂 = 3, 𝜉0 = 0.9, 𝜉1 = 1.6, 𝜉2 = 1.9.

𝛼 𝜇∗
𝑏

𝜇∗𝑤 Λ∗ (𝜇∗
𝑏
, 𝜇∗𝑤)

0.3 13.1045 5.5258 297.005
0.5 12.3133 4.6534 291.4246
0.7 11.5754 3.7850 286.2048

− From 2-4, we observe that with the leap of 𝜃, there is a diminution in the minimum expected cost, and it can also

be seen that a drop of the optimal anticipated cost with the hike of 𝛾 and 𝛼. This means that reducing the working

vacation time, feedback probability, and retention probability results in additional cost savings.
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IV. Conclusion
Our modest paper examines a queue of 𝑀/𝑀/1/𝐾 model including Bernoulli feedback under a hybrid vacation

policy scenario with impatient customers. Employing a recursive method, steady-state probabilities were derived, and

metrics were formulated to assess the system’s performance. In addition, numerical solutions were achieved through the

implementation of the Grey Wolf Optimizer to ensure optimizing the rates of the services and minimizing the function

that expresses the expected cost. Finally, experimental computation results were used to emphasize the effects of several

parameters on (𝜇∗
𝑏
, 𝜇∗𝑤) and Λ(𝜇∗

𝑏
, 𝜇∗𝑤).
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