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Auxiliary Inequalities

Theorem 1

[2, Page 500] For any γ > 0 and u, v > 0, we have the following

(u + v)γ ¬


2γ(uγ + vγ) for γ > 0,

uγ + vγ for 0 < γ ¬ 1,

2γ−1(uγ + vγ) for γ > 1.

Theorem 2

[2, Page 500] Let u, v ∈ R and γ ∈ N. Then |u + v |γ ¬ 2γ−1(|u|γ + |v |γ).

Theorem 3

[2, Page 518] For m ∈ R and γ ∈ N ∪ {0}, we have

(1 + m)γ+1 ­ (γ + 1)m +
(γ + 1)γ

2
m2.
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Theorem 4

[2, Page 518] Let u, v ∈ R be such that u > v > 0 and L(γ) > 1, where
γ ∈ N ∪ {0}. Then (u + v)γ+1 ¬ uγ+1 + (γ + 1)uγv + L(γ)uγv .

Theorem 5

[2, Page 518] Let γ > 2 be an integer and u, v ­ 0. Then there exists a
positive constant A(γ) that does not depend on u and v such that

(u + v)γ ¬ uγ + γuγ−1v + A(γ)(vγ + uγ−2v2).

Theorem 6

[2, Page 518] For any integer γ and u, v ­ 0, we have

uγ + (γ − 1)vγ − γuvγ−1 ­ 0.
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Theorem 7 (Hölder’s Inequality)

[1, Theorem 2.3.1] Let p and q be real numbers such that p > 1 and
1
p + 1

q = 1. Then, for any f , g ∈ Crd([a, b]T), we have

∫ b

a
|f (t)g(t)|∆t ¬

(∫ b

a
|f (t)|p∆t

) 1
p
(∫ b

a
|g(t)|q∆t

) 1
q

.
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Existing Dynamic Wirtinger Inequalities

Theorem 8 ([1, Theorem 6.2.1])

Suppose γ ­ 1 is an odd integer. For a positive M ∈ C1rd(I) satisfying
M∆ > 0 or M∆ < 0 on Iκ, we have

b∫
a

Mγ(t)M(σ(t))

|M∆(t)|γ
(y∆(t))γ+1∆t ­ 1

ψγ+1(α, β, γ)

b∫
a

|M∆(t)| (y(t))γ+1∆t

(1)
for any y ∈ C1rd(I) with y(a) = y(b) = 0, where ψ(α, β, γ) is the largest
root of equation

xγ+1 − 2γ−1(γ + 1)αxγ − 2γ−1β = 0. (2)
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Theorem 9 ([1, Theorem 6.3.1], (Wirtinger inequality))

Suppose γ ­ 1 is an odd integer. For a positive M ∈ C1rd(I) satisfying
M∆ > 0 or M∆ < 0 on Iκ, we have

b∫
a

Mγ(t)M(σ(t))

|M∆(t)|γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

b∫
a

|M∆(t)|(y(t))γ+1∆t

(3)
for any y ∈ C1rd(I) with y(a) = y(b) = 0, where φ(α, β, γ) is the largest
root of the equation

(γ+1)x+
(γ + 1)γ

2
x2−(γ+1)xγ−2γ−1(γ+1)(α+1)xγ−2γ−1β = 0. (4)
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Notations

For an odd integer γ ­ 1 and positive M ∈ C1rd(I), let

α = sup
t∈Iκ

(
M(σ(t))

M(t)

) γ
γ+1

and β = sup
t∈Iκ

(
µ(t)|M∆(t)|

M(t)

)γ
, (5)

A =

b∫
a

|M∆(t)|(y(t))γ+1∆t and B =

b∫
a

Mγ(t)M(σ(t))

|M∆(t)|γ
(y∆(t))γ+1∆t,

(6)
where M and y are defined in Theorem 9.
Set

C =
A
1
γ+1

B
1
γ+1

.
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Proof

We claim that

B ­ 1
φγ+1(α, β, γ)

A. (7)

Notice that

A =

b∫
a

|M∆(t)|(y(t))γ+1∆t

= sgn(M∆(a))

b∫
a

M∆(t)(y(t))γ+1∆t.

Performing integration by parts, we get

A = sgn(M∆(a))

b∫
a

[(M(t)(y(t))γ+1)∆ −M(σ(t))((y(t))γ+1)∆]∆t. (8)
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Keeping in mind the conditions on y , i.e., y(a) = 0 = y(b), we can write

A = −sgn(M∆(a))

b∫
a

M(σ(t))((y(t))γ+1)∆∆t

A ¬
b∫

a

M(σ(t))|(yγ+1)∆(t)|∆t. (9)

Employing the Pötzche chain rule, we have

(yγ+1)∆(t) =


1∫
0

(γ + 1)(y(t) + hµ(t)y∆(t))γdh

 y∆(t),

which yields

|(yγ+1)∆(t)| ¬

∣∣∣∣∣∣
1∫
0

(γ + 1)(y(t) + hµ(t)y∆(t))γdh

∣∣∣∣∣∣ |y∆(t)|. (10)
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Now, applying Theorem 2 with u = y(t) and v = hµ(t)y∆(t) in (10), we
get

|(yγ+1)∆(t)| ¬ 2γ−1(γ + 1)|y∆(t)|
(
|y(t)|γ +

|µ(t)y∆(t)|γ

γ + 1

)
, (11)

and substituting (11) in (9), we get

A ¬ 2γ−1(γ + 1)

b∫
a

(
M(σ(t))

Mγ(t)

(M∆)γ(t)

) 1
γ+1

|y(t)|γ

×
(
M(σ(t))

(M∆)γ(t)

Mγ(t)

) γ
γ+1

|y∆(t)|∆t

+ 2γ−1
b∫

a

(
µ(t)M∆(t)

M(t)

)γ (
M(σ(t))Mγ(t)

(M∆)γ(t)

)
|y∆(t)|γ+1∆t. (12)
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Applying the Hölder inequality, Theorem 7, to (12) with

f = MσMγ

(M∆)γ
|y∆|γ+1, g =

(
Mσ(M∆)γ

Mγ

)
|y |γ+1, p = γ + 1, and q = γ+1

γ , we
get

A ¬ 2γ−1(γ + 1)α

 b∫
a

(
M(σ(t))Mγ(t)

(M∆)γ(t)

)
|y∆(t)|γ+1∆t


1
γ+1

×

 b∫
a

|(M∆)γ(t)| |y(t)|γ+1∆t


γ
γ+1

+ 2γ−1β

b∫
a

(
M(σ(t))Mγ(t)

(M∆)γ(t)

)
|y∆(t)|γ+1∆t.
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Resubstituting A and B, and rearranging the terms, we get

A
1
γ+1

B
1
γ+1

¬ 2γ−1
(
β
B
γ
γ+1

A
γ
γ+1

+ (γ + 1)α

)
.

That is,
Cγ+1 ¬ 2γ−1 (β + (γ + 1)αCγ) , (13)

where C = A
1
γ+1

B
1
γ+1

> 0. Next, applying Theorem 4 with u = C , v = 1, and

L(γ) = 2γ−1(γ + 1), we get

(C + 1)γ+1 ¬ Cγ+1 + (γ + 1)Cγ + 2γ−1(γ + 1)Cγ . (14)

Then, from (13) and (14), we can write

(C + 1)γ+1 − (γ + 1)Cγ − 2γ−1(γ + 1)(α + 1)Cγ − 2γ−1β ¬ 0. (15)
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Using Theorem 3 with m = C in (15), we get

(γ+ 1)C +
(γ + 1)γ

2
C 2− (γ+ 1)Cγ − 2γ−1(γ+ 1)(α+ 1)Cγ − 2γ−1β ¬ 0.

(16)

Thus, we obtain
C ¬ φ(α, β, γ), (17)

where φ(α, β, γ) is the largest root of Equation (4). On replacing C in
terms of A and B in (17), we get

A
1
γ+1 ¬ φ(α, β, γ)B

1
γ+1 ,

which is actually (7), and this completes the proof.
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A Flaw in the Dynamic Wirtinger Inequality

Example 10

Let T = Z, I = [1, 5]T, γ = 3, and M(t) = t. Here σ(t) = t + 1 and
Iκ = {1, 2, 3, 4}. Further, M(t) > 0 for t ∈ I, and M∆(t) = 1 > 0 for
t ∈ Iκ. Take y(t) = (t − 1)(t − 5). From this data, we get

α = 2
3
4 , β = 1, A = 418, B = 8934, and C ≈ 0.465.

Now, substituting the values of α and β in (4), we get the cubic equation

2x + 3x2 − (10 + 2
15
4 )x3 − 2 = 0,

which has only one real root given by φ(α, β, γ) ≈ −0.46. Thus, we have

C ¬ −0.46.

This contradicts the fact that C > 0 and C > 1.
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Further,
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Let y(t) = (t − 1)(t − 8). Then we see that y ∈ C1rd(I), y(1) = y(8) = 0,
and y∆(t) = t + σ(t)− 9 = 3t − 9.

Now, using these values of y and M∆,
we get A = 85536, and hence the value of the right side of (3) is

A

φ4(α, β, γ)
=

85536
(−0.488046)4

= 5173163.92.

However, the left side of (3) turns out to be B = 173664. Thus,

B 6­ A

φ4(α, β, γ)
,

and hence Inequality (3) does not hold.
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Remark

The error in this proof of Theorem 9 is the choice of u and v to obtain
(16). In order to use the Inequality of Theorem 4, we must have C > 1,
since v = 1 and u > v .

The observation made in examples 10 and 11 can
be explained with the following Proposition.

Proposition

For any t > 1 and an odd integer γ > 1, p∆(t) < 0, where

p(t) = (γ+ 1)t +
(γ + 1)γ

2
t2− (γ+ 1)tγ − 2γ−1(γ+ 1)(α+ 1)tγ − 2γ−1β.
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Observation

From the above Proposition, we can conclude that p strictly decreases for
any t > 1 and an odd integer γ > 1.

Also, for any t > 1 and γ > 1, we
have p(t) < 0 because

t +
γ

2
t2 < tγ + 2γ−1(α + 1)tγ +

2γ−1β
γ + 1

.

Hence, for C > 1 and an odd integer γ > 1, we get

C > φ(α, β, γ). (18)

Notice that (18) is valid in the context of Example 10. Therefore, the
Inequality C ¬ φ(α, β, γ) is an incorrect statement.
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Next, on expressing C in terms of A and B in (18) and rearranging the
terms, we get

φ(α, β, γ)−(γ+1) A > B.

Hence, for C > 1 and an odd integer γ > 1, we obtain

b∫
a

Mγ(t)M(σ(t))

|M∆(t)|γ
(y∆(t))γ+1∆t <

1
φγ+1(α, β, γ)

b∫
a

|M∆(t)|(y(t))γ+1∆t.

This implies that (3) in Theorem 9 is an incorrect statement.

Remark

There may be time scales in which Theorem 9 may still hold.
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Example 12

Let T = N2, I = [1, 9]T, γ = 3, and M(t) = t. Here σ(t) = (
√
t + 1)2 and

Iκ = [1, 4]T. Further, M(t) > 0 for t ∈ I, and M∆(t) = 1 > 0 for t ∈ Iκ.
Let y(t) = (t − 1)(t − 9).

From this data, we get

α =

(
9
4

) 3
4
, β = 27, A = 50625, B = 362500, andC =

A
1
γ+1

B
1
γ+1

≈ 0.612.

On substituting the values of α and β in (4), we have

4x + 6x2 −
(

20 + 16
(

9
4

) 3
4

)
x3 − 108 = 0,

which has only one real root given by φ(α, β, γ) ≈ −1.28. Thus, we have
C ¬ −1.28.
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Further,
φ(α, β, γ)−4A = 18859 < 362000 = B.

Hence, Inequality (3) holds true on this considered time scale T.

Remark

However, there exist time scales with a suitable choice of functions as
illustrated above, for which the conditions of Theorem 9 hold true, but
C < 1. This is explained below.
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Example 13

As seen in Example 11, we get C = A
1
γ+1

B
1
γ+1

= (85536)
1
4

(173664)
1
4

= 0.837741 < 1.

Hence, Theorem 4 cannot be used to proceed in the proof of Theorem 9.

Moreover, since α and γ are nonnegative, the leading coefficient of (4) will
always be negative. Therefore, keeping in mind the the fact that p
decreases, we get

lim
t→∞

p(t) = −∞. (19)

Now, since φ(α, β, γ) is the largest root of Equation (4), (19) would imply
that p(t) < 0 for all t > φ(α, β, γ) (if not, then there would exist a root
of p(t) greater than φ(α, β, γ), a contradiction). Since C ­ φ(α, β, γ),
we must have p(C ) < 0. But p(C ) = 19.313953 > 0, which contradicts
to the inequality

(γ+ 1)C +
(γ + 1)γ

2
C 2− (γ+ 1)Cγ − 2γ−1(γ+ 1)(α+ 1)Cγ − 2γ−1β ¬ 0.
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Reformulation of the Inequality

Lemma 14

Let u, v ∈ R, and γ be an odd natural number such that 2γ+1u ­ v > 0.
Then (

v

2

)γ+1

­ (γ + 1)vγu − (2γ+1u)γ+1. (20)
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Theorem 15 (Reformulation of Theorem 9)

Suppose γ ­ 1 is an odd integer. For M ∈ C1rd(I) satisfying M∆ > 0 or
M∆ < 0 on Iκ, we have

b∫
a

Mγ(t)M(σ(t))

|M∆(t)|γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

b∫
a

|M∆(t)|(y(t))γ+1∆t

(21)
for any y ∈ C1rd(I) with y(a) = y(b) = 0, where φ(α, β, γ) is the largest
root of the equation

15
16

(γ + 1)αxγ − (2γ+1α)γ+1 − β

16
= 0. (22)

Sanket Tikare Dynamic Wirtinger Inequalities 26 / 37



Example 16

The new equation in Example 10 is given by

15
16

4(2
3
4 )x3 − 219 − 1

16
= 0. (23)

Also, C = 0.465 < 24(2
3
4 ) = 2γ+1α and the root of (23) is given by

φ = 43.64. On calculating, we have

A

φ4
=

418
(43.64)4

< 8934 = B.

Hence, (21) holds.
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Example 17

In Example 11, we get the same Equation (23) as in Example 16.

Also,
C = 0.84 < 24(2

3
4 ) = 2γ+1α. On calculating, we have

A

φ4
=

85536
(43.64)4

< 173664 = B.

Hence, (21) holds.
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Example 18

In Example 12, we get the equation

15
4

(
9
4

) 3
4
x3 − 21036 − 27

16
= 0. (24)

Here C = 0.612 < 24
(
9
4

) 3
4 = 2γ+1α and the root of Equation (24) is

given by φ = 47.67. On calculating we have,

A

φ4
=

50625
(47.67)4

< 362500 = B.

Hence, (21) holds.
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Some Improved Dynamic Wirtinger-Type Inequalities

Theorem 19

Let A(γ) be the smallest positive constant for which (4) holds and γ ∈ N,
γ ­ 2 be such that

γ(γ + 1) > 6A(γ).

Suppose that M ∈ C1rd(I) is a positive function for which either M∆ > 0
or M∆ < 0, and

α <
A(γ)

2γ(γ + 1)2
and β <

A(γ)

2γ
.

Moreover, let φ(α, β, γ) be the largest positive root of the equation

− (γ + 1)
(

1 + α2γ−1(γ + 1)
)
xγ − A(γ)xγ−1 +

γ(γ + 1)

2
x2 + (γ + 1)x

− A(γ)− 2γ−1β = 0.
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Then, for any y ∈ C1rd(I) with y(t0) = y(a) = 0, we have the inequality

a∫
t0

(M(t))γM(σ(t))

(M∆(t))γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

a∫
t0

|M∆(t)|(y(t))γ+1∆t.
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Theorem 20

Let A(γ) be the smallest positive constant for which (4) holds and γ ∈ N,
γ ­ 3 be such that

(γ − 2)(γ + 1) > 6A(γ).

Suppose that M ∈ C1rd(I) is a positive function for which either M∆ > 0
or M∆ < 0, and (19) holds. Moreover, let φ(α, β, γ) be the largest
positive root of the equation

−(γ+1)
(

1 + α2γ−1(γ + 1)
)
xγ−A(γ)xγ−1+

γ(γ + 1)

2
x2−A(γ)−2γ−1β = 0.

Then, for any y ∈ C1rd(I) with y(t0) = y(a) = 0, we have the inequality

a∫
t0

(M(t))γM(σ(t))

(M∆(t))γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

a∫
t0

|M∆(t)|(y(t))γ+1∆t.
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Theorem 21

Let A(γ) be the smallest positive constant for which (4) holds and γ ∈ N,
γ ­ 2 be such that

γ + 1 > 20A(γ).

Suppose that M ∈ C1rd(I) is a positive function for which either M∆ > 0
or M∆ < 0, and

α <
A(γ)

2γ−1(γ + 1)2
and β <

A(γ)

2γ−1
.

Moreover, let φ(α, β, γ) be the largest positive root of the equation

−(γ+1)
(

1 + α2γ−1(γ + 1)
)
xγ−A(γ)xγ−1+(γ+1)x−A(γ)−2γ−1β = 0.
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Then, for any y ∈ C1rd(I) with y(t0) = y(a) = 0, we have the inequality

a∫
t0

(M(t))γM(σ(t))

(M∆(t))γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

a∫
t0

|M∆(t)|(y(t))γ+1∆t.
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Theorem 22

Let γ ∈ N, γ ­ 2. Suppose that M ∈ C1rd(I) is a positive function for
which either M∆ > 0 or M∆ < 0, and

α <
1

2γ(γ + 1)2
and β <

1
2γ
.

Moreover, let φ(α, β, γ) be the largest positive root of the equation

− 2γ−1(γ + 1)αxγ + (γ + 1)x − 2γ−1β − γ = 0.

Then, for any y ∈ C1rd(J) with y(t0) = y(a) = 0, we have the inequality

a∫
t0

(M(t))γM(σ(t))

(M∆(t))γ
(y∆(t))γ+1∆t ­ 1

φγ+1(α, β, γ)

a∫
t0

|M∆(t)|(y(t))γ+1∆t.
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Concluding Remark

We identify suitable time scales on which the Wirtinger inequality, [1,
Theorem 6.3.1], does not hold. We give proper reasons for the same and
reformulate this version by appropriately redefining the auxiliary equation
(4). We have also identified certain time scales on which this erroneous
result, [1, Theorem 6.3.1], holds. Further, using existing inequalities, we
establish some new improved versions of Wirtinger-like inequality on time
scales.
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Thanks for your attention!
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