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Abstract

In extreme value theory (EVT), estimating the tail index of heavy-tailed dis-
tributions is crucial for understanding rare and extreme events. Traditional esti-
mators such as the Hill and Maximum Likelihood Estimators (MLE) perform well
with large samples but struggle with small sample sizes due to increased bias and
variance. In this paper, we introduce a novel estimation technique the Maximum
Lq-Likelihood Estimator (MLqE), which incorporates a distortion parameter q,
making it more robust to extreme observations and more accurate in small-sample
scenarios. We demonstrate that the MLqE is consistent and asymptotically nor-
mal, outperforming the classical MLE in terms of mean squared error in moderate
and small sample sizes. Moreover, we present simulation results that highlight the
superior performance of the MLqE, particularly when comparing it to the MLE in
tail index estimation. This method not only offers a significant improvement in
the accuracy of heavy-tailed distribution parameter estimation but also provides a
versatile tool for various real-world applications, including finance, hydrology, and
risk management.

Keywords: Heavy-tailed Distributions; Extreme Value Index; Maximum Lq-Likelihood
estimation; Excesses over high thresholds.

1 Introduction

In statistical modeling, Maximum Likelihood Estimation (MLE) is a widely used method
for estimating the parameters of a statistical model. Given a set of observations, MLE
seeks the parameter values that maximize the likelihood function, which represents the
probability of observing the given data under the assumed model. However, classical
MLE can be sensitive to noise and outliers, which may adversely affect the quality of the
parameter estimates.

To address these limitations, the Maximum Likelihood q-Estimator (MLqE) extends
the traditional MLE framework by introducing a tuning parameter q. This parameter
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modifies the likelihood function to adjust the influence of individual data points, thereby
enhancing robustness against atypical observations and improving the estimator’s stabil-
ity in practical scenarios.

This paper focuses on the application of MLE and MLqE to Gaussian Mixture Models
(GMMs), which are probabilistic models that assume the observed data are generated
from a mixture of several Gaussian distributions. Each Gaussian component is charac-
terized by its own mean vector and covariance matrix, allowing the model to capture
complex data distributions and heterogeneity within the dataset.

By comparing the classical MLE approach with the robust MLqE method within the
GMM framework, we investigate their respective performances in terms of parameter
estimation accuracy, robustness to outliers, and convergence properties. Additionally, we
discuss how the Expectation-Maximization (EM) algorithm can be adapted to optimize
both estimators effectively.

Our results demonstrate that incorporating the parameter q provides a flexible way to
balance sensitivity and robustness, making MLqE a valuable tool for statistical inference
in noisy or contaminated data environments.

2 Main Results

Given a set of data X = {x1, x2, . . . , xn}, where each xi is a vector of features, the goal
of MLE is to find the parameters

θ = {πk, µk,Σk}

that maximize the likelihood function.
In a Gaussian Mixture Model, the likelihood function is given by:

L(θ) =
n∏

i=1

K∑
k=1

πk N (xi | µk,Σk)

where:

� K is the number of components in the mixture,

� πk is the mixing weight of the k-th Gaussian component, satisfying

K∑
k=1

πk = 1,

� µk and Σk are the mean vector and covariance matrix of the k-th Gaussian compo-
nent, respectively

� N (xi | µk,Σk) is the probability density function of the k-th Gaussian component,
defined as:

N (xi | µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

)
,

where d is the dimension of the feature vector xi.

The parameters θ = {πk, µk,Σk} are estimated by maximizing the likelihood function
using the Expectation-Maximization (EM) algorithm. The EM algorithm alternates be-
tween two steps:
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E-step: In this step, we compute the posterior probability (or responsibility) of each
data point xi belonging to each Gaussian component k:

γik = P (zi = k | xi, θ) =
πk N (xi | µk,Σk)∑K
j=1 πj N (xi | µj,Σj)

.

M-step: In this step, we update the parameters θ based on the responsibilities com-
puted in the E-step:

� Update the mixing weights:

πk =
1

n

n∑
i=1

γik.

� Update the means:

µk =

∑n
i=1 γikxi∑n
i=1 γik

.

� Update the covariance matrices:

Σk =

∑n
i=1 γik(xi − µk)(xi − µk)

⊤∑n
i=1 γik

.

These steps are repeated iteratively until convergence, i.e., when the change in the
log-likelihood function is below a certain threshold.

The Maximum Likelihood q-Estimator (MLqE) introduces a parameter q that modifies
the likelihood function to enhance robustness against noise and outliers. This approach
generalizes the classical Maximum Likelihood Estimation (MLE) by incorporating an
additional degree of freedom via q, which adjusts the influence of individual data points.
The q-modified likelihood function is defined as:

Lq(θ) =
n∏

i=1

(
K∑
k=1

πk N (xi | µk, σk)

)q

,

where:

� xi are the observed data points,

� N (xi | µk, σk) represents the Gaussian density function with mean µk and standard
deviation σk,

� πk denotes the mixing coefficients,

� q is a tuning parameter that alters the sensitivity of the likelihood function.

The introduction of q influences the estimator’s behavior as follows:

� When q = 1, MLqE reduces to the standard MLE formulation.

� When q > 1, the method downweights highly probable data points, making the
estimation more sensitive to less frequent observations. This property is useful for
handling outliers and improving robustness.
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� When q < 1, it emphasizes dominant data points, which can be beneficial in sce-
narios where rare observations should have less impact.

To estimate the parameters θ, the optimization problem consists of maximizing the
log-transformed q-likelihood function:

logLq(θ) = q

n∑
i=1

log

(
K∑
k=1

πk N (xi | µk, σk)

)
.

Optimization techniques such as gradient-based methods or the Expectation-Maximization
(EM) algorithm can be employed. Depending on q, modifications to the standard EM
algorithm may be required to ensure convergence and numerical stability.

3 Conclusion

In this work, we have explored the parameter estimation methods for Gaussian mixture
models, focusing on the classical Maximum Likelihood Estimation (MLE) and its ro-
bust extension, the Maximum Likelihood q-Estimator (MLqE). While MLE provides an
effective framework for estimating model parameters under ideal conditions, MLqE intro-
duces a tuning parameter q that enhances robustness against noise and outliers, making
it well-suited for real-world data that often deviate from ideal assumptions.

The Expectation-Maximization (EM) algorithm plays a central role in efficiently op-
timizing these estimators. Modifications to the EM algorithm are sometimes necessary
when employing MLqE to ensure stable convergence. Overall, the choice between MLE
and MLqE depends on the specific characteristics of the data and the desired balance
between sensitivity and robustness.

Future work may include extending these approaches to more complex models or
exploring alternative robust estimation frameworks to further improve performance in
challenging data environments.
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