PRODUCT OF TOEPLITZ MATRIX AND KTH-ORDER SLANT TOEPLITZ MATRIX.

S. $BENSLIMAN^{1,*}$, M. $SELMANI^{2,**}$, B. $BIRECH^{3,***}$.

¹ Laboratoire de mathématiques pures et appliqués. Université de Amar Telidji. Laghouat, 03000. Algeria.

² Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO) of University Oran 1, 31000. Algeria.

³ Université IBN Khaldoun Tiaret, 31000. Algeria.

* e-mail: s.bensliman@lagh-univ.dz

** e-mail: Mehdi.selmani@usto-univ.dz

*** e-mail: ibrahim.inzo.1996@gmail.com

Abstract-In this paper, we will study the product of a Toeplitz matrix with a kth-order slant Toeplitz matrix. We will find the necessary and sufficient conditions for this product to be a kth-order slant Toeplitz matrix.

Keywords: Toeplitz matrix, kth-order slant Toeplitz matrix, Hankel matrix, kth-order slant Hankel matrix.

1. INTRODUCTION

Some authors have deduced several properties of kth-order slant Toeplitz (or Hankel) matrices based on the kth-order slant Toeplitz operators, such as [3]. In [2], Gu gives necessary and sufficient conditions for a product of two Toeplitz matrices to be a Toeplitz matrix, and in [1], Bensliman and Yagoub give necessary and sufficient conditions for a product of two rectangular Toeplitz matrices to be a rectangular Toeplitz matrix.

The main objective of this paper is to study the product of two matrices A and B, where A is a Toeplitz matrix and B is a kth-order slant Toeplitz matrix, and we find the conditions under which the product AB is a kth-order slant Toeplitz matrix. It is easy to see that if k=1, we will find the necessary and sufficient conditions for a product of two Toeplitz matrices to be a Toeplitz matrix. Gu discussed this case in [?].

2. PRELIMINARIES

Let $M_{n\times n}(\mathbb{C})$ denote the set of $n\times n$ matrices with entries in \mathbb{C} . Throughout this paper, the rows and columns of any $n\times n$ matrix will be indexed from 0 to n-1. Accordingly, we denote the standard basis of \mathbb{C}^n by $\{e_0, e_1, ..., e_{n-1}\}$. Let J and S be two $n\times n$ matrices defined as follows

$$J = \begin{bmatrix} 0 & 0 & \cdots & 1 \\ & 1 & 0 \\ & \ddots & & \vdots \\ 1 & & 0 \end{bmatrix}, \qquad S = \begin{bmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & & & \\ 0 & 1 & & & \\ \vdots & & \ddots & & \\ 0 & \cdots & & 1 & 0 \end{bmatrix}.$$

It is easy to verify that $J_n^2 = I_r$

Recall that a Toeplitz matrix is a matrix of the form

$$A = \begin{bmatrix} a_0 & \overline{\alpha}_1 & \cdots & \overline{\alpha}_{n-1} \\ a_1 & a_0 & & \vdots \\ \vdots & \ddots & & \\ a_{n-1} & & \end{bmatrix},$$

and the kth-order slant Toeplitz matrix is a matrix of the form

$$B = \begin{bmatrix} b_0 & b_{-1} & \cdots & b_{-n+1} \\ b_k & b_{k-1} & & b_{k-n+1} \\ b_{2k} & b_{2k-1} & & b_{2k-n+1} \\ \vdots & & & & \\ b_{(n-1)k} & & & b_{(n-1)k-n+1} \end{bmatrix},$$

where k is a positive integer such that $1 \le k \le n-1$.

In this work, the set of $n \times n$ Toeplitz matrices is denoted by $\mathcal{T}(n)$, and the set of $n \times n$ kth-order slant Toeplitz matrices is denoted by $\mathcal{T}(n, k)$.

For two vectors x and y in \mathbb{C}^n .the notation $x \otimes y$ denotes a tensor product of x and y, which is defined by

$$(x \otimes y)z = \langle z, y \rangle x$$
 for all $z \in \mathbb{C}^n$,

where $x\otimes y=x\overline{y}^T$, and $\langle z,y\rangle=z_1\overline{y}_1+z_1\overline{y}_2+...+z_n\overline{y}_n$. Let $\Delta A=A-SAS^{*k}$ be the displacement of matrix $A\in M_{n\times n}(\mathbb{C})$.

It is worth noting the following elementary lemma, which characterizes when a matrix in $M_{n\times n}(\mathbb{C})$ is a Toeplitz matrix or a kth-order slant Toeplitz matrix.

Lemma 1. Let A be $n \times n$ matrix. Then

(1) $A \in \mathcal{T}(n,k)$ if and only if

$$\Delta A = \sum_{i=0}^{k-1} u_i \otimes e_i + e_0 \otimes v,$$

for some u and v be vectors in \mathbb{C}^n .

(2) $A \in \mathcal{T}(n)$ if and only if

$$A - SAS^* = u \otimes e_0 + e_0 \otimes v,$$

for some u and v be vectors in \mathbb{C}^n .

- (1) Let A be $n \times n$ Toeplitz matrix, then the matrix $S_n A S_n^{*k}$ is the same as matrix A except Proof. for the k-1 first rows and the first column of the matrix SAS^{*k} , which are zero. Thus, $A-SAS^{*k}$ is $n \times n$ matrix all of its coefficients are zero except those in the k-1 first rows and the first column.
 - (2) The proof relies on the previous assertion for k = 1.

Throughout this paper, we assume that $a = (0, a_1, a_2, ..., a_{n-1})^T$, $\alpha = (0, \alpha_1, \alpha_2, ..., \alpha_{n-1})^T$, $\beta = (0, \alpha_1, \alpha_2, ..., \alpha_{n-1})^T$ $(0,...,0,b_{-k},...,b_{-n+1})^T$, and $b_{(i,k)}=(b_{-i},b_{k-i},b_{2k-i},...,b_{(n-1)k-i})^T$, for i=0,1,...,n-1.

Lemma 2. Let $A \in \mathcal{T}(n)$ and $B \in \mathcal{T}(n,k)$. Then we have

- 1) $Ae_0 = a + a_0e_0$.
- 2) $SAe_{n-1} = \hat{\alpha}$, where $\hat{\alpha} = (0, \overline{\alpha}_{n-1}, ..., \overline{\alpha}_1)^T$. 3) $S^k B^* e_{n-1} = b^\sharp$, where $b^\sharp = (0, ..., \overline{b}_{(n-1)k}, \overline{b}_{(n-1)k-1}, ..., \overline{b}_{(n-1)k-n+k+1})^T$.

Lemma 3. Let x_1, x_2, y_1 and y_2 be vectors in \mathbb{C}^n . If the matrices $x_1 \otimes y_1$ and $x_2 \otimes y_2$ are equal, then one of the following cases is satisfied

1)
$$x_1 = x_2 = 0$$
 or $y_1 = y_2 = 0$.

PRODUCT OF TOEPLITZ MATRIX AND KTH-ORDER SLANT TOEPLITZ MATRIX. 3

- 2) $x_1 = y_2 = 0$ or $y_1 = x_2 = 0$.
- 3) $x_1 = \lambda x_2$ and $\overline{\lambda} y_1 = y_2$ for some nonzero scalar λ .

By convention $\frac{1}{\infty} = 0$, we can propose that $x_1 \otimes y_1 = x_2 \otimes y_2$, then one of the following cases is satisfied

- i. Trivial case: $x_1 = x_2 = 0$ or $y_1 = y_2 = 0$.
- ii. $x_1 = \lambda x_2$ and $\overline{\lambda} y_1 = y_2$ for some scalar $\lambda \in \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

The following lemma plays a pivotal role in our analysis, as it facilitates the manipulation of the product between a Toeplitz matrix and a kth-order slant Toeplitz matrix.

Lemma 4. Let $A \in \mathcal{T}(n)$ and $B \in \mathcal{T}(n,k)$. Then we have

$$\Delta(AB) = \sum_{i=0}^{k-1} Ab_{(i,k)} \otimes e_i + a \otimes \beta + e_0 \otimes (\overline{a_0}\beta + S^k B^* S^* \alpha) - \hat{\alpha} \otimes b^{\sharp}.$$

3.PRODUCT OF TOEPLITZ MATRIX AND kTH-ORDER SLANT TOEPLITZ MATRIX.

Theorem 1. Let $A \in \mathcal{T}(n)$ ($A \neq 0$) and $B \in \mathcal{T}(n,k)$ ($B \neq 0$) with $1 \leq k \leq n-1$. Then $AB \in \mathcal{T}(n,k)$ if and only if one of the following conditions is met

- 1) $A = a_0 I$, for some $a_0 \in \mathbb{C}$.
- 2) A is an upper triangular Toeplitz matrix and B is kth-order slant Toeplitz matrix with $b^{\sharp} = 0$.
- 3) A is an lower triangular Toeplitz matrix and B is kth-order slant Toeplitz matrix with $\beta = 0$.
- 4) B is kth-order slant Toeplitz matrix with $\beta = b^{\sharp} = 0$.
- 5) A is a Toeplitz matrix with $a = \lambda \hat{\alpha}$, and B is kth-order slant Toeplitz matrix with $b^{\sharp} = 0\overline{\lambda}\beta$, for some $\lambda \in \mathbb{C}^*$.

ACKNOWLEDGMENTS

This research work is supported by the General Direction of Scientific Research and Technological Development (DGRSDT), Algeria.

REFERENCES

- 1. Bensliman, S., Yagoub, A., Toumache, K. Product of rectangular Toeplitz (Hankel) Matrices, Comput. Math. Math. Phys, vol 64, 11, 2510–2522 (2024).
- Gu, C., Patton, L. "Commutation Relations for Toeplitz and Hankel Matrices," SIAM J. matrix anal.appl. 24(3), 728-746 (2003).
- 3. Łanucha, B., Michalska, M. Compressions of kth-order slant Toeplitz operators to model spaces, Lithuanian Mathematical Journal, vol 62, 1, 69–87 (2021).
- 4. Yagoub, A. "Products of asymmetric truncated Toeplitz operators." Adv. Oper. Theory 5, 233-247 (2020).