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A general Abstract

In this talk, we give an overview of the power inequality for the numerical
radius, which has been known for so long. Then, we present some new
progress related to this important inequality.
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A Technical Abstract

Using integral representations of the fractional power of matrices, and the
geometric intuition of sectorial matrices, we show that for any
accretive-dissipative matrix A and any t ∈ (0, 1), the matrix At is
accretive-dissipative, and that

ω(At) ≥ ωt(A),

where ω(·) is the numerical radius. This inequality complements the
well-known power inequality ω(Ak) ≤ ωk(A), valid for any square matrix
and positive integer power k . As an application, we prove that if A is
accretive, then the above fractional inequality holds if 0 < t < 1

2 . Other
consequences will be given too.
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Basic terminologies and notations

Mn is the algebra of all n × n complex matrices.

The numerical radius and spectral norm are, respectively,

ω(A) = max
∥x∥=1

| ⟨Ax , x⟩ |, ∥A∥ = max
∥x∥=1

∥Ax∥.

Lemma

Let A ∈ Mn. Then

ω(A) = sup
θ∈R

∥∥∥ℜ(
e iθA

)∥∥∥ .
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Terminologies

A is Hermitian if A∗ = A; A∗ being its conjugate transpose.

A is positive semi-definite if ⟨Ax , x⟩ ≥ 0. We simply write A ≥ O.

|A| = (A∗A)
1
2 ; the positive semi-definite square root.

A > O means A ≥ O is invertible.

The real part of A is ℜ(A) = A+A∗

2 . The imaginary part is

ℑ(A) = A−A∗

2i .

A is accretive if ℜA > O.

A is accretive-dissipative if ℜA,ℑA > O.

Γn is the class of all accretive matrices in Mn.
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An accretive Matrix

x

y

β W (A): Accretive
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An accretive-Dissipative Matrix

x

y

β

W (A):
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The power Inequality

A basic inequality

ω(Ak) ≤ ωk(A),A ∈ Mn, k ∈ N. (3.1)

The reversed verssion

ω(A−k) ≥ ω−k(A),A ∈ Mn, k ∈ N;

provided that A is invertible.
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Why is the power inequality important?

Sub-multiplicativity

ω(AB) ≰ ω(A)ω(B).

However, ∥AB∥ ≤ ∥A∥ ∥B∥.
ω(A3) ≰ ω(A)ω2(A).

Partial Sub-multiplicativity

ω(Ak) ≤ ω(A)ω(A) . . . ω(A).
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The main problem

We cannot find in any reference any work that treats fractional powers of
the numerical radius. We have the following question.

A question

What is the relation between ω(At) and ωt(A), for 0 < t < 1?

Here we need to be very careful!

Caution

We need At to be well defined.
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Definition of At

When we deal with fractional powers of matrices, we look at

Simple cases

A ≥ O.

A is accretive

More generally

Let A ∈ Mn be such that W (A)∩(−∞, 0] = ∅, and let ΩA denote a
contour in the resolvent of A that winds once about each eigenvalue
of A and avoids (−∞, 0]. Then for any t ∈ (0, 1), the prinicpal
fractional power At can be defined via the Dunford integral as follows:

At =
1

2πi

∫
ΩA

z t
(
zI − A

)−1
dz , (4.1)
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Definition of At

This coincides with the following formula (see [?, ?]):

Another formula

At =
sin(tπ)

π

∫ ∞

0
st−1A(sI + A)−1 ds. (4.2)

Watch out

It is important to remember that in (4.1), and in what follows, z t

refers to the principal power of z , and so is At .
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An application of the integral identities

One can use (4.2) to prove that

Fractional powers of accretive

If A is accretive, then so is At , for any t ∈ (0, 1).

See [?, Lemma A6] and [?, Theorem 2.3].
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Some Lemmas

Lemma

Let A > O and let t ∈ [0, 1]. Then

∥A∥t = ∥At∥.

Lemma

([?, Lemma A1],[?, Corollary 2.4]) Let A ∈ Γn be such that
W (A) ⊆ Sα for some α ∈

[
0, π2

)
, and let t ∈ [0, 1]. Then W (At) ⊆ Stα.

Lemma

[?, Proposition 7.1] Let A ∈ Γn and let t ∈ [0, 1]. Then

ℜt(A) ≤ ℜ(At).
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A simple motivation

We state the following simple fractional consequence of (3.1).

Proposition

Let A ∈ Γn, and let k ∈ N. Then

ω
(
A

1
k

)
≥ ω

1
k (A).

Proof.

Since A is accretive, A
1
k is a well-defined accretive matrix.

Applying (3.1) implies

ω(A) = ω

((
A

1
k

)k
)

≤ ωk
(
A

1
k

)
,

which is equivalent to the desired statement.

Mohammad Sababheh (Abdullah Al Salem University, Kuwait Princess Sumaya University for Technology, Jordan)On the power inequality for the numerical radius
Advances in Operator Theory and Inequalities November 1-2, 2025 15

/ 32



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple motivation

We state the following simple fractional consequence of (3.1).

Proposition

Let A ∈ Γn, and let k ∈ N. Then

ω
(
A

1
k

)
≥ ω

1
k (A).

Proof.

Since A is accretive, A
1
k is a well-defined accretive matrix.

Applying (3.1) implies

ω(A) = ω

((
A

1
k

)k
)

≤ ωk
(
A

1
k

)
,

which is equivalent to the desired statement.

Mohammad Sababheh (Abdullah Al Salem University, Kuwait Princess Sumaya University for Technology, Jordan)On the power inequality for the numerical radius
Advances in Operator Theory and Inequalities November 1-2, 2025 15

/ 32



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

This triggers something

Conjecture

Let A ∈ Γn and 0 < t < 1. Then

ω(At) ≥ ωt(A).

Comments

We conjecture this for accretive matrices.

Notice that the inequality in the conjecture is trivial for
positive matrices.

Our numerical calculations support this conjecture.
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First achievement

Theorem

Let A ∈ Mn be accretive-dissipative and let t ∈ (0, 1). Then

ω(At) ≥ ωt(A).

Comments

This does not resolve the conjecture!

This partially answers our conjecture.

This requires further study of At .
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Second achievement

Corollary

Let A ∈ Γn and let 0 < t < 1
2 . Then

ω(At) ≥ ωt(A).

Comments

This does not resolve the conjecture!

This partially answers our conjecture.
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The proof of the accretive case: 0 < t < 1/2

Proof.

A ∈ Γn ⇒ W (A
1
2 ) ⊂ Sπ/4.

e i
π
4 A

1
2 is accretive-dissipative.

Let t = r
2 , 0 < r < 1:

ω(At) = ω
((

A
1
2

)r)
= ω

(
e i(r

π
4
)
(
A

1
2

)r)
= ω

((
e i

π
4 A

1
2

)r)
≥ ωr

(
e i

π
4 A

1
2

)
= ωr

(
A

1
2

)
≥ ω

r
2 (A) = ωt(A).
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A byproduct

The following allows arbitrary powers (m, k are not necessarily integers):

Corollary

Let A be accretive, and assume that Ak is accretive for some positive
number k ≥ 2. Then

ωm(A) ≥ ω(Am),

for 2 ≤ m ≤ k .

What is this?

This is an extension of the power inequality to fractional powers
larger than 2.

But

A harsh condition that A and Ak are accretive!
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Technical observation

Proposition

Let A ∈ Mn and let x0 ∈ S1(Cn) be such that ω(A) = |⟨Ax0, x0⟩|. If
γ = Arg(⟨Ax0, x0⟩), then

ω(A) =
∥∥ℜ (

e−iγA
)∥∥ .

Proof.

Notice first that, by the compactness of S1(Cn), we have
ω(A) = |⟨Ax0, x0⟩| for some x0 ∈ S1(Cn) . Let γ be the principal argument
of ⟨Ax0, x0⟩. Then

⟨Ax0, x0⟩ = |⟨Ax0, x0⟩|e iγ = ω(A)e iγ .
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Proof continued

Now, noting that the matrix ℜ
(
e−iγ A

)
is Hermitian, and that for any

matrix X , ω(ℜ(X )) ≤ ω(X ), we deduce the following simple consequences:∥∥∥ℜ(e−iγ A
)∥∥∥ = ω

(
ℜ
(
e−iγ A

))
≤ ω(e−iγ A) = ω(A).

On the other hand,∥∥∥ℜ(e−iγ A
)∥∥∥ = ω

(
ℜ
(
e−iγ A

))
= sup

||x ||=1

∣∣∣⟨ℜ(e−iγ A
)
x , x⟩

∣∣∣
≥

∣∣∣⟨ℜ(e−iγ A
)
x0, x0⟩

∣∣∣
=

∣∣∣ℜ(e−iγ ⟨Ax0, x0⟩
)∣∣∣

=
∣∣∣ℜ(e−iγ e iγω(A)

)∣∣∣ = ∣∣∣ℜ(ω(A))∣∣∣
= ω(A).

This completes the proof.
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A remark

Remark

If A is accretive-dissipative, then W (A) ⊆ {z ∈ C : ℜ(z),ℑ(z) > 0}.
This means that 0 < Arg ⟨Ax , x⟩ < π

2 for any x ∈ Cn.

Consequently, Proposition 9 implies that ω(A) =
∥∥∥ℜ(e−iγ A

)∥∥∥ for some

γ ∈ (0, π/2).
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A property for accretive-dissipative matrices

If A ∈ Mn is accretive, and 0 < t < 1, then At is accretive.
In the following Proposition, we extend this observation to
accretive-dissipative matrices.

Proposition

Let A ∈ Mn be accretive-dissipative, and let 0 < t < 1. Then At is
accretive-dissipative.

Lemma

[?, Lemma 1] Let A = H + iK be accretive-dissipative. Then
A−1 = E + iF , where

E =
(
H + KH−1K

)−1
> O,

and

F = −
(
K + HK−1H

)−1
< O.

Hence, A−1 is not accretive-dissipative.
Mohammad Sababheh (Abdullah Al Salem University, Kuwait Princess Sumaya University for Technology, Jordan)On the power inequality for the numerical radius

Advances in Operator Theory and Inequalities November 1-2, 2025 24
/ 32



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A property for accretive-dissipative matrices

If A ∈ Mn is accretive, and 0 < t < 1, then At is accretive.
In the following Proposition, we extend this observation to
accretive-dissipative matrices.

Proposition

Let A ∈ Mn be accretive-dissipative, and let 0 < t < 1. Then At is
accretive-dissipative.

Lemma

[?, Lemma 1] Let A = H + iK be accretive-dissipative. Then
A−1 = E + iF , where

E =
(
H + KH−1K

)−1
> O,

and

F = −
(
K + HK−1H

)−1
< O.

Hence, A−1 is not accretive-dissipative.
Mohammad Sababheh (Abdullah Al Salem University, Kuwait Princess Sumaya University for Technology, Jordan)On the power inequality for the numerical radius

Advances in Operator Theory and Inequalities November 1-2, 2025 24
/ 32



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Proof of Proposition

Proof.

Let A ∈ Mn be accretive-dissipative. Then so is sI + A for s > 0.

Consequently, by Lemma 12, we have −ℑ
(
(sI + A)−1

)
> O.

Now, let t ∈ (0, 1). Then, by Lemma 3, ℜ(At) > O. So we only need to
prove ℑ(At) > O. But, by (4.2), we have

At =
sin(tπ)

π

∫ ∞

0
st−1A(sI + A)−1 ds.

So, it is enough to prove that ℑ
(
A(sI + A)−1

)
is positive-definite. Since

A(sI + A)−1 = I − s(sI + A)−1, it follows that

ℑ
(
A(sI + A)−1

)
= −ℑ

(
(sI + A)−1

)
> O,

which completes the proof.
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.

Another needed observation

Proposition

Let A ∈ Γn and let −π
2 < θ < π

2 . Then, for any t ∈ (0, 1),(
e iθA

)t
= e itθAt .

Proof.

Let A ∈ Γn and let −π
2 < θ < π

2 . Since W (A) ⊆ Sα for some 0 < α < π
2 ,

it follows that W (e iθA) avoids (−∞, 0]. Hence, using (4.1), we can write(
e iθA

)t
=

1

2πi

∫
Ω

eiθA

z t
(
zI − e iθA

)−1
dz , 0 < t < 1. (5.1)
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Proof continued

In this identity, Ωe iθA refers to a rotation by θ of a contour ΩA that lies
completely in the right-half plane, and winds exactly once about each
eigenvalue of A. Such assumption is justified by the fact that A is
accretive. Due to this, Ωe iθA avoids (−∞, 0].
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Proof continued

Now, (
e iθA

)t
=

1

2πi

∫
Ω

eiθA

z t
(
zI − e iθA

)−1
dz

=
1

2πi

∫
Ω

eiθA

e−iθz t
(
e−iθzI − A

)−1
dz .
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Proof continued

Setting u = e−iθz rotates the contour Ωe iθA by an angle −θ to obtain ΩA

back. Now, since u is a complex number in the right half plane, then
Arg(u) ∈ (−π

2 , π2 ) and consequently, −π < Arg(z) = Arg(u) + θ < π.
This ensures the validity of the following factorization

z t = (e iθu)t = e itθ ut .

Hence,
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Proof complete

(
e−iγA

)t
=

1

2πi

∫
Ω

eiθA

z t
(
zI − e iθA

)−1
dz

=
1

2πi

∫
Ω

eiθA

e−iθz t
(
e−iθzI − A

)−1
dz

=
1

2πi

∫
ΩA

(e iθu)t
(
uI − A

)−1
du

=
1

2πi

∫
Ωu

e itθut
(
uI − A

)−1
du

= e itθ
( 1

2π i

∫
ΩA

ut
(
uI − A

)−1
du

)
= e itθAt .

This completes the proof.
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The main result

Theorem

Let A ∈ Mn be accretive-dissipative and let t ∈ (0, 1). Then

ω(At) ≥ ωt(A).

Proof.

Let x0 ∈ S1(Cn) be such that ω(A) = |⟨Ax0, x0⟩|, and let

γ = Arg⟨Ax0, x0⟩. Since ℜ
(
e−iγA

)
= cos γℜ(A) + sin γℑ(A), and

0 < γ < π
2 , it follows that ℜ

(
e−iγA

)
> O, and hence e−iγA is

accretive.
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Proof continued

Now,

ωt(A) =
∥∥∥ℜ(e−iγA

)∥∥∥t (by Proposition 9)

=
∥∥∥ℜt

(
e−iγA

)∥∥∥ (by Lemma 2)

≤
∥∥∥ℜ((e−iγA)t

)∥∥∥ (by Lemma 4)

=
∥∥∥ℜ(e−itγAt

)∥∥∥ (by Proposition 13)

≤ sup
θ∈R

∥∥∥ℜ(e iθAt
)∥∥∥

= ω(At) (by Lemma 1).

This completes the proof.
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