# On compactness of state spaces in classical Banach spaces

Soumitra Daptari

# Institute of Arts and Sciences Tokyo University of Science

2 November 2025

This is a joint work with Saurabh Dwivedi, Shiv Nadar Institution of Eminence, Delhi NCR.

### Outline

- Notations
- 2 Preliminaries
- On spaces of sequences of vectors
- On spaces of vector-valued functions
- List of References

(1) 
$$X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$$

Let X be a Banach space over scalar field  $\mathbb{K}$ . We will use the following notations throughout the talk.

(1) 
$$X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$$

(2)  $X^*$  stands for dual space of X.

(1) 
$$X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$$

- (2)  $X^*$  stands for dual space of X.
- (3)  $c_0 = \{(\alpha_n) \subseteq \mathbb{K} : \alpha_n \longrightarrow 0 \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sup_{n\mathbb{N}} |\alpha_n|$ .

(1) 
$$X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$$

- (2)  $X^*$  stands for dual space of X.
- (3)  $c_0 = \{(\alpha_n) \subseteq \mathbb{K} : \alpha_n \longrightarrow 0 \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sup_{n \mathbb{N}} |\alpha_n|$ .
- (4)  $\ell^1 = \{(\alpha_n) \subseteq \mathbb{K} : \sum_{n \in \mathbb{N}} |\alpha_n| < \infty \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sum_{n \in \mathbb{N}} |\alpha_n|$ .

(1) 
$$X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$$

- (2)  $X^*$  stands for dual space of X.
- (3)  $c_0 = \{(\alpha_n) \subseteq \mathbb{K} : \alpha_n \longrightarrow 0 \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sup_{n \mathbb{N}} |\alpha_n|$ .
- (4)  $\ell^1 = \{(\alpha_n) \subseteq \mathbb{K} : \sum_{n \in \mathbb{N}} |\alpha_n| < \infty \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sum_{n \in \mathbb{N}} |\alpha_n|$ .
- (5) For a compact Hausdorff space  $\Omega$ ,  $C(\Omega) = \{f : \Omega \longrightarrow \mathbb{K} : f \text{ is continuous}\}$  equipped with the norm  $||f|| = \sup_{t \in \Omega} |f(t)|$ .

Let X be a Banach space over scalar field  $\mathbb{K}$ . We will use the following notations throughout the talk.

- (1)  $X_1 = \{x \in X : ||x|| \le 1\} \& S(X) = \{x \in X : ||x|| = 1\}.$
- (2)  $X^*$  stands for dual space of X.
- (3)  $c_0 = \{(\alpha_n) \subseteq \mathbb{K} : \alpha_n \longrightarrow 0 \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sup_{n \mathbb{N}} |\alpha_n|$ .
- (4)  $\ell^1 = \{(\alpha_n) \subseteq \mathbb{K} : \sum_{n \in \mathbb{N}} |\alpha_n| < \infty \text{ as } n \longrightarrow \infty\}$  equipped with the norm  $\|(\alpha_n)\| = \sum_{n \in \mathbb{N}} |\alpha_n|$ .
- (5) For a compact Hausdorff space  $\Omega$ ,  $C(\Omega) = \{f : \Omega \longrightarrow \mathbb{K} : f \text{ is continuous}\}$  equipped with the norm  $||f|| = \sup_{t \in \Omega} |f(t)|$ .
- (6) Let  $(\Omega, \Sigma, \mu)$  be a measure space.  $L^1(\mu) = \{f : \Omega \longrightarrow \mathbb{K} : f \text{ is measurable function } \& \int_{\Omega} |f| d\mu < \infty\}\}$  equipped with the norm  $||f|| = \int_{\Omega} |f| d\mu$ .

3/17

## State space in unital $C^*$ -algebra

Let  $\mathcal{A}$  be a  $C^*$ -algebra with unit I. Then state space of  $\mathcal{A}$  is  $\mathcal{S}(\mathcal{A}) = \{ \rho \in \mathcal{S}_{\mathcal{A}^*} : \rho(I) = 1 \}$ 

4/17

<sup>&</sup>lt;sup>1</sup>Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

### State space in unital $C^*$ -algebra

Let  $\mathcal A$  be a  $C^*$ -algebra with unit I. Then state space of  $\mathcal A$  is  $\mathcal S(\mathcal A)=\{\rho\in\mathcal S_{\mathcal A^*}:\rho(I)=1\}$ 

# State space of a Banach space <sup>1</sup>

Let X be a Banach space  $x \in S_X$ . The state space of X at the point x is defined by  $S_x = \{x^* \in S_{X^*} : x^*(x) = 1\}$ 

# State space in unital $C^*$ -algebra

Let A be a  $C^*$ -algebra with unit I. Then state space of A is  $S(A) = \{ \rho \in S_{A^*} : \rho(I) = 1 \}$ 

# State space of a Banach space <sup>1</sup>

Let X be a Banach space  $x \in S_X$ . The state space of X at the point x is defined by  $S_x = \{x^* \in S_{X^*} : x^*(x) = 1\}$ 

### A few facts on state spaces in Banach spaces

- $S_x$  is non-empty for every  $x \in S_X$  by Hahn-Banach extension theorem.
- $S_x$  is a convex subset of  $B_{X^*}$ . In fact, it is a face of  $B_{X^*}$  i.e if any line segment in  $B_X^*$  intersect with  $S_x$ , then entire segment should be in  $S_x$ .
- $S_x$  is singleton  $\iff$  the norm of X is Gautuax differentiable at x.

<sup>&</sup>lt;sup>1</sup>Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

### Canonical topologies on $X^*$ .

- Norm-topology the topology on  $X^*$  induced from the norm in dual space.
- Weak-topology the smallest topology on  $X^*$  such that all  $x^{**} \in X^{**}$  are continuous.
- Weak\*-topology the smallest topology on  $X^*$  such that all  $J_x \in X^{**}$  are continuous, where  $J_x(f) = f(x) \ \forall \ f \in X^*$ .

5/17

### Canonical topologies on $X^*$ .

- Norm-topology the topology on  $X^*$  induced from the norm in dual space.
- Weak-topology the smallest topology on  $X^*$  such that all  $x^{**} \in X^{**}$  are continuous.
- Weak\*-topology the smallest topology on  $X^*$  such that all  $J_x \in X^{**}$  are continuous, where  $J_x(f) = f(x) \ \forall \ f \in X^*$ .

# Compactness of $S_x$

- $S_x$  is norm, weak, weak\* closed.
- $S_x$  is weak\* compact.
- $S_x$  is not weak compact.
- $S_x$  is not norm compact.

5/17

### Canonical topologies on $X^*$ .

- Norm-topology the topology on  $X^*$  induced from the norm in dual space.
- Weak-topology the smallest topology on  $X^*$  such that all  $X^{**} \in X^{**}$  are continuous.
- Weak\*-topology the smallest topology on  $X^*$  such that all  $J_x \in X^{**}$  are continuous, where  $J_x(f) = \widetilde{f}(x) \ \forall \ f \in X^*$ .

# Compactness of $S_x$

- $\circ$   $S_x$  is norm, weak, weak\* closed.
- $S_x$  is weak\* compact.
- $S_x$  is not weak compact.
- $S_x$  is not norm compact.

### Smooth Banach space

A Banach space X is said to be smooth if  $S_x$  is singleton for every  $x \in S_X$ . In this case,  $S_x$  is compact with respect to above all three topologies.

### **Motivations**

### Motivation 1<sup>2</sup>

Let  $\mathcal{A}$  be a  $C^*$ -algebra with unit I. If the state space of  $\mathcal{A}$  at the unit I is weakly compact, then  $\mathcal{A}$  is a finite-dimensional space.

<sup>&</sup>lt;sup>2</sup>Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

<sup>&</sup>lt;sup>3</sup>Franchetti, Carlo; Payá, Rafael. Banach spaces with strongly subdifferentiable norm. Boll. Un. Mat. Ital. B (7) 7 (1993), no. 1, 45-70.

### **Motivations**

### Motivation 1<sup>2</sup>

Let  $\mathcal{A}$  be a  $C^*$ -algebra with unit I. If the state space of  $\mathcal{A}$  at the unit I is weakly compact, then  $\mathcal{A}$  is a finite-dimensional space.

# Strongly subdifferentiable (SSD)

The norm of X is said to be strongly subdifferentiable (SSD) at  $x \in S(X)$  if  $\lim_{t\to 0^+} \frac{\|x+ty\|-1}{t}$  exists uniformly for  $y \in B_X$ .

<sup>&</sup>lt;sup>2</sup>Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

<sup>&</sup>lt;sup>3</sup>Franchetti, Carlo; Payá, Rafael. Banach spaces with strongly subdifferentiable norm. Boll. Un. Mat. Ital. B (7) 7 (1993), no. 1. 45-70.

### **Motivations**

### Motivation 1<sup>2</sup>

Let  $\mathcal{A}$  be a  $C^*$ -algebra with unit I. If the state space of  $\mathcal{A}$  at the unit I is weakly compact, then  $\mathcal{A}$  is a finite-dimensional space.

# Strongly subdifferentiable (SSD)

The norm of X is said to be strongly subdifferentiable (SSD) at  $x \in S(X)$  if  $\lim_{t\to 0^+} \frac{\|x+ty\|-1}{t}$  exists uniformly for  $y \in B_X$ .

### Motivation 2<sup>3</sup>

Suppose the norm on X is SSD and all state spaces are norm compact, then strong subdifferentiability passes through the quotients X/Y for a proximinal subspace  $Y \subseteq X$ .

<sup>&</sup>lt;sup>2</sup>Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

<sup>&</sup>lt;sup>3</sup>Franchetti, Carlo; Payá, Rafael. *Banach spaces with strongly subdifferentiable norm.* Boll. Un. Mat. Ital. B (7) 7 (1993), no.

# Examples in sequence spaces

### Example 1

Let  $(\alpha_n) \in S(c_0)$ . Then,

- $(\alpha_n)$  is smooth in  $c_0 \iff (\alpha_n) = ae_N$  for some  $N \in \mathbb{N}$  and |a| = 1.
- $S_{(\alpha_n)}$  is norm compact for all  $(\alpha_n) \in S(c_0)$ .
- $S_{(\alpha_n)}$  is weakly compact for all  $(\alpha_n) \in S(c_0)$

# Examples in sequence spaces

# Example 1

Let  $(\alpha_n) \in S(c_0)$ . Then,

- $(\alpha_n)$  is smooth in  $c_0 \iff (\alpha_n) = ae_N$  for some  $N \in \mathbb{N}$  and |a| = 1.
- $S_{(\alpha_n)}$  is norm compact for all  $(\alpha_n) \in S(c_0)$ .
- ullet  $S_{(lpha_n)}$  is weakly compact for all  $(lpha_n)\in S(c_0)$

### Example 2

Let  $(\alpha_n) \in \mathcal{S}(\ell^1)$ . Then,

- $(\alpha_n)$  is smooth in  $\ell^1 \iff \alpha_n \neq 0$  for all  $n \in \mathbb{N}$ .
- $S_{(\alpha_n)}$  is norm compact  $\iff \Lambda = \{n \in \mathbb{N} : \alpha_n = 0\}$  is finite.
- $S_{(\alpha_n)}$  is weakly compact  $\iff \Lambda = \{n \in \mathbb{N} : \alpha_n = 0\}$  is finite.

# Examples in function spaces

# Example 3

Let  $\mu$  be a finite measure &  $f \in S(L_1(\mu))$ . Then,

- f is smooth in  $L_1(\mu) \iff f \neq 0$  a. e.
- $S_f$  is norm compact  $\iff f$  is a smooth point in  $L_1(\mu)$ .
- $S_f$  is weakly compact  $\iff$  f is a smooth point in  $L_1(\mu)$ .

# Examples in function spaces

### Example 3

Let  $\mu$  be a finite measure &  $f \in S(L_1(\mu))$ . Then,

- f is smooth in  $L_1(\mu) \iff f \neq 0$  a. e.
- $S_f$  is norm compact  $\iff$  f is a smooth point in  $L_1(\mu)$ .
- $S_f$  is weakly compact  $\iff f$  is a smooth point in  $L_1(\mu)$ .

### Example 4

Let  $f \in S(C(\Omega)) \& \Gamma = \{t \in \Omega : |f(t)| = ||f||\}$ . Then,

- f is smooth in  $C(\Omega) \iff \Gamma$  is singleton.
- $S_f$  is norm compact  $\iff \Gamma$  is finite.
- $S_f$  is weakly compact  $\iff \Gamma$  is finite.

### **Notation:**

•  $\ell^1(X) := \{(x_n)_1^\infty \subset X : \sum_{n \in \mathbb{N}} \|x_n\| < \infty\}$  equipped with the norm  $\|(x_n)_1^\infty\| = \sum_{n \in \mathbb{N}} \|x_n\|$ .

### **Notation:**

•  $\ell^1(X):=\{(x_n)_1^\infty\subset X:\sum_{n\in\mathbb{N}}\|x_n\|<\infty\}$  equipped with the norm  $\|(x_n)_1^\infty\|=\sum_{n\in\mathbb{N}}\|x_n\|$ .

# Theorem (D., Dwivedi)

Let  $(x_n)_1^\infty \in S(\ell^1(X))$ ,  $x_n \neq 0$  for each  $n \in \mathbb{N}$ . Then

- $(x_n)$  is a smooth point in  $\ell^1(X) \iff \frac{x_n}{\|x_n\|}$  is a smooth point in X for each  $n \in \mathbb{N}$ .
- $S_{(x_n)}$  is norm compact in  $\ell^\infty(X^*) \iff S_{\frac{x_n}{\|x_n\|}}$  is norm compact in  $X^*$  for each  $n \in \mathbb{N}$  &  $\operatorname{diam}(S_{\frac{x_n}{\|x_n\|}}) \to 0$  as  $n \to \infty$ .
- $S_{(x_n)}$  is weakly compact in  $\ell^{\infty}(X^*) \iff S_{\frac{x_n}{\|x_n\|}}$  is weakly compact in  $X^*$  for each  $n \in \mathbb{N}$  &  $\operatorname{diam}(S_{\frac{x_n}{\|x_n\|}}) \to 0$  as  $n \to \infty$ .

### Corollary (D., Dwivedi)

Let  $(x_n)_1^\infty \in S(\ell^1(X))$ . Then,  $(x_n)$  is a smooth point in  $\ell^1(X) \iff x_n \neq 0 \& \frac{x_n}{\|x_n\|}$  is a smooth point in  $X \forall n \in \mathbb{N}$ .

### Corollary (D., Dwivedi)

Let  $(x_n)_1^\infty \in S(\ell^1(X))$ . Then,  $(x_n)$  is a smooth point in  $\ell^1(X) \iff x_n \neq 0 \& \frac{x_n}{\|x_n\|}$  is a smooth point in  $X \forall n \in \mathbb{N}$ .

# Corollary (D., Dwivedi)

Let X be a finite-dimensional space & let  $(x_n) \in \ell^1(X)$ . Then,  $S_{(x_n)}$  is norm compact in  $\ell^\infty(X^*)$   $\iff \Lambda = \{n \in \mathbb{N} : x_n = 0\}$  is finite & diam  $\left(S_{\frac{x_n}{\|x_n\|}}\right) \to 0$  as  $n \to \infty$ .

# Corollary (D., Dwivedi)

Let  $(x_n)_1^\infty \in S(\ell^1(X))$ . Then,  $(x_n)$  is a smooth point in  $\ell^1(X) \iff x_n \neq 0 \& \frac{x_n}{\|x_n\|}$  is a smooth point in  $X \forall n \in \mathbb{N}$ .

# Corollary (D., Dwivedi)

Let X be a finite-dimensional space & let  $(x_n) \in \ell^1(X)$ . Then,  $S_{(x_n)}$  is norm compact in  $\ell^\infty(X^*)$   $\iff \Lambda = \{n \in \mathbb{N} : x_n = 0\}$  is finite & diam  $\left(S_{\frac{x_n}{\|x_n\|}}\right) \to 0$  as  $n \to \infty$ .

# Corollary (D., Dwivedi)

Let X be a reflexive space & let  $(x_n) \in S(\ell^1(X))$ . Then,  $S_{(x_n)}$  is weakly compact in  $\ell^\infty(X^*) \Longleftrightarrow \Lambda = \{n \in \mathbb{N} : x_n = 0\}$  is finite & diam  $\left(S_{\frac{x_n}{\|x_n\|}}\right) \to 0$  as  $n \to \infty$ .

### **Notation:**

•  $c_0(X) := \{(x_n)_1^{\infty} \subset X : ||x_n|| \to 0\}$  equipped with the norm  $||(x_n)_1^{\infty}|| = \sup_{n \in \mathbb{N}} ||x_n||$ .

### **Notation:**

•  $c_0(X):=\{(x_n)_1^\infty\subset X:\|x_n\|\to 0\}$  equipped with the norm  $\|(x_n)_1^\infty\|=\sup_{n\in\mathbb{N}}\|x_n\|$ .

### Theorem (D., Dwivedi)

Let  $(x_n) \in S(c_0(X))$  &  $\Lambda = \{n \in \mathbb{N} : ||x_n|| = 1\}$ . Then,

- $(x_n)$  is a smooth point in  $c_0(X) \iff (x_n) = e_N x_N$  for some  $N \in \Lambda \& x_N$  is a smooth point in X.
- $S_{(x_n)}$  is norm compact in  $\ell^1(X^*) \iff S_{x_n}$  is norm compact in  $X^*$  for each  $n \in \Lambda$ .
- $S_{(x_n)}$  is weakly compact in  $\ell^1(X^*) \iff S_{x_n}$  is weakly compact in  $X^*$  for each  $n \in \Lambda$ .

### **Notation:**

• Let  $L^1([0,1],X):=\{f:[0,1]\longrightarrow X,\ \mu$ -measurable function:  $\int_{[0,1]}\|f(t)\|d\mu(t)<\infty\}$  equipped with the norm  $\|f\|=\int_{[0,1]}\|f(t)\|d\mu(t)$ . In this case, we consider  $\mu$  to be the Lebesgue measure.

### **Notation:**

• Let  $L^1([0,1],X):=\{f:[0,1]\longrightarrow X,\ \mu$ -measurable function:  $\int_{[0,1]}\|f(t)\|d\mu(t)<\infty\}$  equipped with the norm  $\|f\|=\int_{[0,1]}\|f(t)\|d\mu(t)$ . In this case, we consider  $\mu$  to be the Lebesgue measure.

# Theorem (D., Dwivedi)

Let  $f \in S(L^1([0,1],X))$ ,  $f \neq 0$  a.e., and let  $X^*$  be separable. Then,

- f is a smooth point  $\iff \frac{f(t)}{\|f(t)\|}$  is smooth in X a.e. <sup>4</sup>
- $S_f$  is norm compact  $\iff$  f is a smooth point.
- $S_f$  is weakly compact  $\iff f$  is a smooth point.

### **Notation:**

• Let  $L^1([0,1],X):=\{f:[0,1]\longrightarrow X,\ \mu$ -measurable function:  $\int_{[0,1]}\|f(t)\|d\mu(t)<\infty\}$  equipped with the norm  $\|f\|=\int_{[0,1]}\|f(t)\|d\mu(t)$ . In this case, we consider  $\mu$  to be the Lebesgue measure.

# Theorem (D., Dwivedi)

Let  $f \in S(L^1([0,1],X))$ ,  $f \neq 0$  a.e., and let  $X^*$  be separable. Then,

- f is a smooth point  $\iff \frac{f(t)}{\|f(t)\|}$  is smooth in X a.e. <sup>4</sup>
- $S_f$  is norm compact  $\iff f$  is a smooth point.
- $S_f$  is weakly compact  $\iff f$  is a smooth point.

### Remark

The result for smooth point first shown by Deeb and Khalil  $^5$ . They mainly used Kuratowski-Ryll-Nardzewski selection theorem. In this work, we have given an alternative proof using Von Neumann's selection theorem.

Soumitra Daptari (Tokyo University of Science)

<sup>4,5</sup> Deeb, W.; Khalil, R. Smooth points of vector- valued function spaces. Rocky Mountain J.: Math.: 24 (1994), no. 2, 505-512.

# Corollary (D., Dwivedi)

Let  $f \in S(L^1([0,1],X))$  and let  $X^*$  be separable. Then f is a smooth point  $\iff f \neq 0$  a.e. &  $\frac{f(t)}{\|f(t)\|}$  is smooth in X a.e.

# Corollary (D., Dwivedi)

Let  $f \in S(L^1([0,1],X))$  and let  $X^*$  be separable. Then f is a smooth point  $\iff f \neq 0$  a.e. &  $\frac{f(t)}{\|f(t)\|}$  is smooth in X a.e.

Let  $f \in L^1(\mu, X)$ . We define  $|f| : \Omega \to \mathbb{R}$  by  $|f|(\omega) = ||f(\omega)||$ . It is easy to see that  $|f| \in L^1(\mu)$ . One can also check that  $f \in S(L^1(\mu, X)) \iff |f| \in S(L^1(\mu))$ .

# Corollary (D., Dwivedi)

Let  $f \in S(L^1([0,1],X))$  and let  $X^*$  be separable. Then f is a smooth point  $\iff f \neq 0$  a.e. &  $\frac{f(t)}{\|f(t)\|}$  is smooth in X a.e.

Let  $f \in L^1(\mu, X)$ . We define  $|f| : \Omega \to \mathbb{R}$  by  $|f|(\omega) = ||f(\omega)||$ . It is easy to see that  $|f| \in L^1(\mu)$ . One can also check that  $f \in S(L^1(\mu, X)) \iff |f| \in S(L^1(\mu))$ .

# Theorem (D., Dwivedi)

Let X be a Banach space and let  $\mu$  be the Lebesgue measure on [0,1]. Suppose  $f \in S(L^1([0,1],X))$ , then

- f is a smooth point  $\Longrightarrow |f|$  is smooth in  $L^1(\mu)$ .
- $S_f$  is norm compact  $\Longrightarrow |f|$  is smooth in  $L^1(\mu)$ .
- $S_f$  is weakly compact  $\Longrightarrow |f|$  is smooth in  $L^1(\mu)$ .

### **Notation:**

• For a compact Hausdorff space  $\Omega$ ,  $C(\Omega,X) = \{f: \Omega \longrightarrow X: f \text{ is continuous}\}$  equipped with the norm  $\|f\| = \sup_{t \in \Omega} \|f(t)\|$ .

### **Notation:**

• For a compact Hausdorff space  $\Omega$ ,  $C(\Omega, X) = \{f : \Omega \longrightarrow X : f \text{ is continuous}\}$  equipped with the norm  $||f|| = \sup_{t \in \Omega} ||f(t)||$ .

### Theorem (D., Dwivedi)

Let  $f \in S(C(\Omega, X))$  and  $\Lambda = \{\omega \in \Omega : ||f(\omega)|| = 1\}.$ 

- If  $\Lambda$  is finite and  $S_{f(w)}$  is norm compact for each  $w \in \Lambda \Longrightarrow S_f$  is norm compact.
  - The converse is true if  $\overline{\operatorname{ext}}^{w^*}(X_1^*) \subseteq S(X^*)$ .
- If  $\Lambda$  is finite and  $S_{f(w)}$  is weakly compact for each  $w \in \Lambda \Longrightarrow S_f$  is weakly compact.
  - The converse is true if  $\overline{\operatorname{ext}}^{w^*}(X_1^*) \subseteq S(X^*)$ .

### **Notation:**

• For a compact Hausdorff space  $\Omega$ ,  $C(\Omega, X) = \{f : \Omega \longrightarrow X : f \text{ is continuous}\}$  equipped with the norm  $||f|| = \sup_{t \in \Omega} ||f(t)||$ .

### Theorem (D., Dwivedi)

Let  $f \in S(C(\Omega, X))$  and  $\Lambda = \{\omega \in \Omega : ||f(\omega)|| = 1\}.$ 

- If  $\Lambda$  is finite and  $S_{f(w)}$  is norm compact for each  $w \in \Lambda \Longrightarrow S_f$  is norm compact.
  - The converse is true if  $\overline{\operatorname{ext}}^{w^*}(X_1^*) \subseteq S(X^*)$ .
- If  $\Lambda$  is finite and  $S_{f(w)}$  is weakly compact for each  $w \in \Lambda \Longrightarrow S_f$  is weakly compact.
  - The converse is true if  $\overline{\operatorname{ext}}^{w^*}(X_1^*) \subseteq S(X^*)$ .

# Lemma (D., Dwivedi)

Let  $A \subseteq C(\Omega)$  be a closed subspace such that  $1 \in A$ . Then every extreme point of  $A_1^*$  is the restriction to A of an extreme point of  $C(\Omega)_1^*$ . Moreover, we have  $\overline{\text{ext}}^{w^*}(A_1^*) \subseteq S(A^*)$ .

### **Problems**

### **Notations:**

- For  $1 \le p < \infty$ ,  $\ell^p(X) := \{(x_n)_1^\infty \subset X : \sum_{n \in \mathbb{N}} \|x_n\|^p < \infty\}$  equipped with the norm  $\|(x_n)_1^\infty\| = (\sum_{n \in \mathbb{N}} \|x_n\|^p)^{\frac{1}{p}}$ .
- Let  $(\Omega, \Sigma, \mu)$  be a measure space and  $1 \leq p < \infty$ . We denote  $L^p([0,1],X) := \{f: [0,1] \longrightarrow X, \mu$ -measurable function:  $\int_{[0,1]} \|f(t)\|^p d\mu(t) < \infty\}$  equipped with the norm  $\|f\| = (\int_{[0,1]} \|f(t)\|^p d\mu(t))^{\frac{1}{p}}$ .

### **Problems**

### **Notations:**

- For  $1 \le p < \infty$ ,  $\ell^p(X) := \{(x_n)_1^\infty \subset X : \sum_{n \in \mathbb{N}} \|x_n\|^p < \infty\}$  equipped with the norm  $\|(x_n)_1^\infty\| = (\sum_{n \in \mathbb{N}} \|x_n\|^p)^{\frac{1}{p}}$ .
- Let  $(\Omega, \Sigma, \mu)$  be a measure space and  $1 \leq p < \infty$ . We denote  $L^p([0,1],X) := \{f: [0,1] \longrightarrow X, \ \mu\text{-measurable function: } \int_{[0,1]} \|f(t)\|^p d\mu(t) < \infty \}$  equipped with the norm  $\|f\| = (\int_{[0,1]} \|f(t)\|^p d\mu(t))^{\frac{1}{p}}$ .

### Problem 1

Can we characterize the state spaces of  $\ell^p(X)$  that are weak (norm) compact, for 1 ?

### **Problems**

### **Notations:**

- For  $1 \le p < \infty$ ,  $\ell^p(X) := \{(x_n)_1^\infty \subset X : \sum_{n \in \mathbb{N}} \|x_n\|^p < \infty\}$  equipped with the norm  $\|(x_n)_1^\infty\| = (\sum_{n \in \mathbb{N}} \|x_n\|^p)^{\frac{1}{p}}$ .
- Let  $(\Omega, \Sigma, \mu)$  be a measure space and  $1 \leq p < \infty$ . We denote  $L^p([0,1],X) := \{f: [0,1] \longrightarrow X, \ \mu\text{-measurable function: } \int_{[0,1]} \|f(t)\|^p d\mu(t) < \infty\}$  equipped with the norm  $\|f\| = (\int_{[0,1]} \|f(t)\|^p d\mu(t))^{\frac{1}{p}}$ .

### Problem 1

Can we characterize the state spaces of  $\ell^p(X)$  that are weak (norm) compact, for 1 ?

### Problem 2

- Let  $\mu$  be a finite (non-Lebesgue) measure. We ask: what can be said about the weak or norm compactness of the state space of  $L^1(\Omega, X)$ ?
- Under what conditions is the state space of  $L^p(\Omega, X)$  norm (weak) compact for 1 ?

15 / 17

### References



S. Daptari, S. Dwivedi, A study on state spaces in classical Banach spaces, Colloq. Math. 179 (1), 87–105 (2025).



Deeb, W.; Khalil, R. Smooth points of vector- valued function spaces. Rocky Mountain J. Math. 24 (1994), no. 2, 505-512.



Rao, T. S. S. R. K. Geometry of the state space (preprint, 2025).

# Thank you!