Insights into Numerical Range and Numerical Radius Inequalities

Prof. Kallol Paul

Vice-Chancellor
University of Kalyani
&
Professor of Mathematics
Jadavpur University (on lien)
West Bengal
INDIA

International Seminar on Advances in Operator Theory and Inequalities Keynote Lecture on 1st November 2025

Outline

- Numerical range
- Numerical radius inequalities
 - Inequalities using Cartesian decomposition of operator
 - Inequalities using Cauchy-Schwarz inequality and it's generalizations
 - Inequalities using Bernau and Smithies inequality
- Generalized Numerical Ranges
- 4 Discussion on some open problems
- References

(**Numerical range**) Let T be a bounded linear operator on the complex Hilbert space $\mathcal H$ with inner product $\langle\cdot,\cdot\rangle$. The numerical range of an operator T is the subset of $\mathbb C$, denoted by W(T), and is defined as

$$W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1\}.$$

(**Numerical range**) Let T be a bounded linear operator on the complex Hilbert space $\mathcal H$ with inner product $\langle\cdot,\cdot\rangle$. The numerical range of an operator T is the subset of $\mathbb C$, denoted by W(T), and is defined as

$$W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1\}.$$

Example 2

• Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

(**Numerical range**) Let T be a bounded linear operator on the complex Hilbert space $\mathcal H$ with inner product $\langle\cdot,\cdot\rangle$. The numerical range of an operator T is the subset of $\mathbb C$, denoted by W(T), and is defined as

$$W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1\}.$$

Example 2

• Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then $W(T) = \{z : |z| \le \frac{1}{2}\}$.

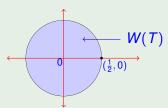
(**Numerical range**) Let T be a bounded linear operator on the complex Hilbert space $\mathcal H$ with inner product $\langle\cdot,\cdot\rangle$. The numerical range of an operator T is the subset of $\mathbb C$, denoted by W(T), and is defined as

$$W(T) = \{ \langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1 \}.$$

Example 2

ullet Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
. Then $W(T) = \{z : |z| \leq \frac{1}{2}\}$.



Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set.

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set. If T acts on a finite-dimensional space, then W(T) is compact.

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set. If T acts on a finite-dimensional space, then W(T) is compact.

Proof.

• By Cauchy-Schwarz inequality, $|\langle Tx, x \rangle| \le ||T|| ||x||^2 \le ||T||$.

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set. If T acts on a finite-dimensional space, then W(T) is compact.

- By Cauchy-Schwarz inequality, $|\langle Tx, x \rangle| \le ||T|| ||x||^2 \le ||T||$.
- $\Rightarrow W(T)$ is bounded.

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set. If T acts on a finite-dimensional space, then W(T) is compact.

- By Cauchy-Schwarz inequality, $|\langle Tx, x \rangle| \le ||T|| ||x||^2 \le ||T||$.
- $\Rightarrow W(T)$ is bounded.
 - The unit sphere of a finite-dimensional space is a compact set

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a bounded set. If T acts on a finite-dimensional space, then W(T) is compact.

- By Cauchy-Schwarz inequality, $|\langle Tx, x \rangle| \le ||T|| ||x||^2 \le ||T||$.
- $\Rightarrow W(T)$ is bounded.
 - The unit sphere of a finite-dimensional space is a compact set and the quadratic map $x \mapsto \langle Tx, x \rangle$ is continuous.

Example 4

• Let T be the unilateral shift (left) operator on ℓ_2 .

Example 4

- Let T be the unilateral shift (left) operator on ℓ_2 .
- For $x = (x_1, x_2, ...) \in \mathcal{H}$ with ||x|| = 1,

$$Tx = (x_2, x_3, \ldots)$$

Example 4

- Let T be the unilateral shift (left) operator on ℓ_2 .
- For $x = (x_1, x_2, ...) \in \mathcal{H}$ with ||x|| = 1,

$$Tx = (x_2, x_3, \ldots)$$

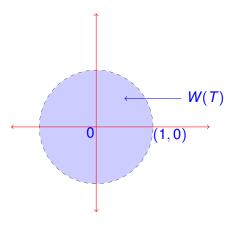
• $\langle Tx, x \rangle = x_2 \bar{x}_1 + x_3 \bar{x}_2 + x_4 \bar{x}_3 + \cdots$ with $|x_1|^2 + |x_2|^2 + \cdots = 1$.

Example 4

- Let T be the unilateral shift (left) operator on ℓ_2 .
- For $x = (x_1, x_2, ...) \in \mathcal{H}$ with ||x|| = 1,

$$Tx = (x_2, x_3, \ldots)$$

- $\langle Tx, x \rangle = x_2 \bar{x}_1 + x_3 \bar{x}_2 + x_4 \bar{x}_3 + \cdots$ with $|x_1|^2 + |x_2|^2 + \cdots = 1$.
- Here $W(T) = \{z : |z| < 1\}$, which is not compact.



Proposition 5

Proposition 5

(a)
$$W(aT + bI) = aW(T) + b$$
,

Proposition 5

- (a) W(aT + bI) = aW(T) + b,
- **(b)** $W(U^*TU) = W(T)$ for any unitary operator U,

Proposition 5

- (a) W(aT + bI) = aW(T) + b,
- **(b)** $W(U^*TU) = W(T)$ for any unitary operator U,
- (c) $W(T^*) = {\bar{\lambda}, \lambda \in W(T)}$

Proposition 5

- (a) W(aT + bI) = aW(T) + b,
- **(b)** $W(U^*TU) = W(T)$ for any unitary operator U,
- (c) $W(T^*) = {\bar{\lambda}, \lambda \in W(T)}$ and
- (d) $W(T+S) \subseteq W(T) + W(S)$.

The most fundamental theorem in the study of numerical range was proved by Toeplitz and Hausdorff more than 100 years ago.

The most fundamental theorem in the study of numerical range was proved by Toeplitz and Hausdorff more than 100 years ago. Toeplitz [18] proved that boundary of the numerical range is always a convex curve

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an ellipse whose foci are the eigenvalues of T.

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an ellipse whose foci are the eigenvalues of T.

Proof.

• As $W(U^*TU)=W(T)$ so by Schur's decomposition theorem, T can be assumed in the form , $T=\begin{pmatrix} \lambda_1 & a \\ 0 & \lambda_2 \end{pmatrix}$.

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an ellipse whose foci are the eigenvalues of T.

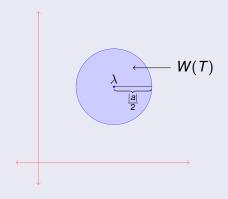
Proof.

• As $W(U^*TU)=W(T)$ so by Schur's decomposition theorem, T can be assumed in the form , $T=\begin{pmatrix} \lambda_1 & a \\ 0 & \lambda_2 \end{pmatrix}$.

• If $\lambda_1 = \lambda_2 = \lambda$, then W(T- λ I) is a circular disc with centre at 0 and radius $\frac{1}{2}|a|$.

- If $\lambda_1 = \lambda_2 = \lambda$, then W(T- λ I) is a circular disc with centre at 0 and radius $\frac{1}{2}|a|$.
- \Rightarrow W(T) is a circular disc with centre at λ and radius $\frac{1}{2}|a|$.

- If $\lambda_1 = \lambda_2 = \lambda$, then W(T- λ I) is a circular disc with centre at 0 and radius $\frac{1}{2}|a|$.
- \Rightarrow W(T) is a circular disc with centre at λ and radius $\frac{1}{2}|a|$.

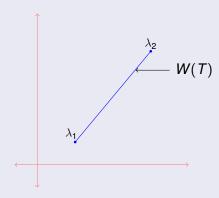


• If
$$\lambda_1 \neq \lambda_2$$
 and $a = 0$ then $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

- If $\lambda_1 \neq \lambda_2$ and a = 0 then $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
- $\Rightarrow \text{ For any } x = (f,g) \text{ with } |f|^2 + |g|^2 = 1,$ $\langle Tx, x \rangle = \lambda_1 |f|^2 + \lambda_2 |g|^2 = t\lambda_1 + (1-t)\lambda_2, \text{ where } t = |f|^2.$

- If $\lambda_1 \neq \lambda_2$ and a = 0 then $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
- \Rightarrow For any x = (f, g) with $|f|^2 + |g|^2 = 1$, $\langle Tx, x \rangle = \lambda_1 |f|^2 + \lambda_2 |g|^2 = t\lambda_1 + (1 t)\lambda_2$, where $t = |f|^2$.
- \Rightarrow W(T) is the line segment joining λ_1 and λ_2 .

- If $\lambda_1 \neq \lambda_2$ and a = 0 then $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.
- $\Rightarrow \text{ For any } x = (f, g) \text{ with } |f|^2 + |g|^2 = 1,$ $\langle Tx, x \rangle = \lambda_1 |f|^2 + \lambda_2 |g|^2 = t\lambda_1 + (1 t)\lambda_2, \text{ where } t = |f|^2.$
- \Rightarrow W(T) is the line segment joining λ_1 and λ_2 .



10/81

• If $\lambda_1 \neq \lambda_2$ and $a \neq 0$, then we have

$$T - \frac{\lambda_1 + \lambda_2}{2}I = \begin{pmatrix} \frac{\lambda_1 - \lambda_2}{2} & a \\ 0 & \frac{\lambda_2 - \lambda_1}{2} \end{pmatrix} = \begin{pmatrix} re^{i\theta} & a \\ 0 & -re^{i\theta} \end{pmatrix},$$

where
$$\frac{\lambda_1 - \lambda_2}{2} = re^{i\theta}$$
, $0 \le \theta \le 2\pi$.

• If $\lambda_1 \neq \lambda_2$ and $a \neq 0$, then we have

$$T - \frac{\lambda_1 + \lambda_2}{2} \textbf{I} = \begin{pmatrix} \frac{\lambda_1 - \lambda_2}{2} & \textbf{a} \\ \textbf{0} & \frac{\lambda_2 - \lambda_1}{2} \end{pmatrix} = \begin{pmatrix} \textbf{re}^{i\theta} & \textbf{a} \\ \textbf{0} & -\textbf{re}^{i\theta} \end{pmatrix},$$

where $\frac{\lambda_1 - \lambda_2}{2} = re^{i\theta}$, $0 \le \theta \le 2\pi$.

•
$$e^{-i\theta} \begin{bmatrix} T - \frac{\lambda_1 + \lambda_2}{2}I \end{bmatrix} = \begin{pmatrix} r & b \\ 0 & -r \end{pmatrix}$$
, where $b = ae^{-i\theta}$.

• If $\lambda_1 \neq \lambda_2$ and $a \neq 0$, then we have

$$T - \frac{\lambda_1 + \lambda_2}{2} \textbf{I} = \begin{pmatrix} \frac{\lambda_1 - \lambda_2}{2} & \textbf{a} \\ \textbf{0} & \frac{\lambda_2 - \lambda_1}{2} \end{pmatrix} = \begin{pmatrix} \textbf{re}^{i\theta} & \textbf{a} \\ \textbf{0} & -\textbf{re}^{i\theta} \end{pmatrix},$$

where $\frac{\lambda_1 - \lambda_2}{2} = re^{i\theta}$, $0 \le \theta \le 2\pi$.

- $e^{-i\theta} \begin{bmatrix} T \frac{\lambda_1 + \lambda_2}{2}I \end{bmatrix} = \begin{pmatrix} r & b \\ 0 & -r \end{pmatrix}$, where $b = ae^{-i\theta}$.
- Consider $A = e^{-i\theta} \left[T \frac{\lambda_1 + \lambda_2}{2} I \right]$.

• If $\lambda_1 \neq \lambda_2$ and $a \neq 0$, then we have

$$T - \frac{\lambda_1 + \lambda_2}{2} \textbf{I} = \begin{pmatrix} \frac{\lambda_1 - \lambda_2}{2} & \textbf{a} \\ \textbf{0} & \frac{\lambda_2 - \lambda_1}{2} \end{pmatrix} = \begin{pmatrix} \textbf{re}^{i\theta} & \textbf{a} \\ \textbf{0} & -\textbf{re}^{i\theta} \end{pmatrix},$$

where $\frac{\lambda_1 - \lambda_2}{2} = re^{i\theta}$, $0 \le \theta \le 2\pi$.

- $e^{-i\theta} \begin{bmatrix} T \frac{\lambda_1 + \lambda_2}{2}I \end{bmatrix} = \begin{pmatrix} r & b \\ 0 & -r \end{pmatrix}$, where $b = ae^{-i\theta}$.
- Consider $A = e^{-i\theta} \left[T \frac{\lambda_1 + \lambda_2}{2} I \right]$.
- Let z=(f,g) and $|f|^2+|g|^2=1$, $f=e^{i\alpha}\cos\theta$, $g=e^{i\beta}\sin\theta$, $\theta\in[0,\frac{\pi}{2}], \alpha,\beta\in[0,2\pi]$.

٦

• Then $\langle Az, z \rangle = r(\cos^2 \theta - \sin^2 \theta) + be^{i(\beta - \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta - \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta - \alpha + \gamma)$, $\gamma = \arg b$.

- Then $\langle Az, z \rangle = r(\cos^2 \theta \sin^2 \theta) + be^{i(\beta \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta \alpha + \gamma)$, $\gamma = \arg b$.
- So $(x r\cos 2\theta)^2 + y^2 = \frac{|b|^2}{4}\sin^2 2\theta$.

- Then $\langle Az, z \rangle = r(\cos^2 \theta \sin^2 \theta) + be^{i(\beta \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta \alpha + \gamma)$, $\gamma = \arg b$.
- So $(x r \cos 2\theta)^2 + y^2 = \frac{|b|^2}{4} \sin^2 2\theta$.
- This is a family of circles and we obtain their union.

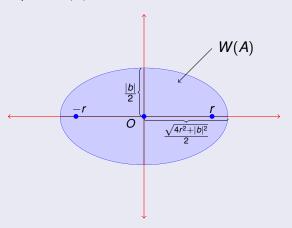
- Then $\langle Az, z \rangle = r(\cos^2 \theta \sin^2 \theta) + be^{i(\beta \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta \alpha + \gamma)$, $\gamma = \arg b$.
- So $(x r \cos 2\theta)^2 + y^2 = \frac{|b|^2}{4} \sin^2 2\theta$.
- This is a family of circles and we obtain their union.
- Let $2\theta = \phi$ and so $(x r\cos\phi)^2 + y^2 = \frac{|b|^2}{4}\sin^2\phi$, $0 \le \phi \le \theta$.

- Then $\langle Az, z \rangle = r(\cos^2 \theta \sin^2 \theta) + be^{i(\beta \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta \alpha + \gamma)$, $\gamma = \arg b$.
- So $(x r \cos 2\theta)^2 + y^2 = \frac{|b|^2}{4} \sin^2 2\theta$.
- This is a family of circles and we obtain their union.
- Let $2\theta = \phi$ and so $(x r\cos\phi)^2 + y^2 = \frac{|b|^2}{4}\sin^2\phi$, $0 \le \phi \le \theta$.
- Differentiating with respect to ϕ , we get $(x r \cos \phi)r = \frac{|b|^2}{4} \cos \phi$.

- Then $\langle Az, z \rangle = r(\cos^2 \theta \sin^2 \theta) + be^{i(\beta \alpha)} \sin \theta \cos \theta = x + iy$, where $x = r \cos 2\theta + \frac{|b|}{2} \sin 2\theta \cos(\beta \alpha + \gamma)$, $y = \frac{|b|}{2} \sin 2\theta \sin(\beta \alpha + \gamma)$, $\gamma = \arg b$.
- So $(x r \cos 2\theta)^2 + y^2 = \frac{|b|^2}{4} \sin^2 2\theta$.
- This is a family of circles and we obtain their union.
- Let $2\theta = \phi$ and so $(x r\cos\phi)^2 + y^2 = \frac{|b|^2}{4}\sin^2\phi$, $0 \le \phi \le \theta$.
- Differentiating with respect to ϕ , we get $(x r \cos \phi)r = \frac{|b|^2}{4} \cos \phi$.
- Eliminating ϕ between the last two equations, we get $\frac{x^2}{r^2+(|b|^2/4)}+\frac{y^2}{(|b|^2/4)}=1$.

• Thus W(A) is an ellipse with center at origin and minor axis |b|, major axis $\sqrt{4r^2 + |b|^2}$, foci at r and -r.

• Thus W(A) is an ellipse with center at origin and minor axis |b|, major axis $\sqrt{4r^2 + |b|^2}$, foci at r and -r.

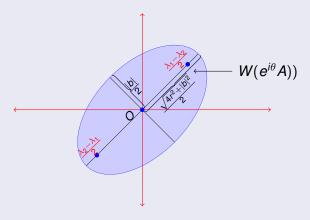


• Since $A=e^{-i\theta}\left[T-rac{\lambda_1+\lambda_2}{2}I
ight],\ W(T)=W(e^{i\theta}A)+rac{\lambda_1+\lambda_2}{2}.$

• Since $A = e^{-i\theta} \left[T - \frac{\lambda_1 + \lambda_2}{2} I \right]$, $W(T) = W(e^{i\theta}A) + \frac{\lambda_1 + \lambda_2}{2}$. Now, $W(e^{i\theta}A)$ is an ellipse with foci at $e^{i\theta}r$, $-e^{i\theta}r$,

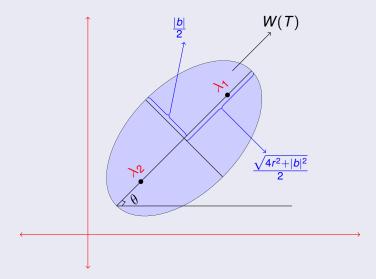
• Since $A=e^{-i\theta}\left[T-\frac{\lambda_1+\lambda_2}{2}I\right]$, $W(T)=W(e^{i\theta}A)+\frac{\lambda_1+\lambda_2}{2}$. Now, $W(e^{i\theta}A)$ is an ellipse with foci at $e^{i\theta}r$, $-e^{i\theta}r$, i.e., at $\frac{\lambda_1-\lambda_2}{2}$, $\frac{\lambda_2-\lambda_1}{2}$ and the major axis has an inclination of θ with the real axis.

• Since $A=e^{-i\theta}\left[T-\frac{\lambda_1+\lambda_2}{2}I\right]$, $W(T)=W(e^{i\theta}A)+\frac{\lambda_1+\lambda_2}{2}$. Now, $W(e^{i\theta}A)$ is an ellipse with foci at $e^{i\theta}r$, $-e^{i\theta}r$, i.e., at $\frac{\lambda_1-\lambda_2}{2}$, $\frac{\lambda_2-\lambda_1}{2}$ and the major axis has an inclination of θ with the real axis.



• Thus W(T) is an ellipse with foci at λ_1, λ_2 and the major axis has an inclination of θ with the real axis.

• Thus W(T) is an ellipse with foci at λ_1, λ_2 and the major axis has an inclination of θ with the real axis.



Example 7

(i) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} i & 0 \\ 0 & 2+3i \end{pmatrix}.$$

Example 7

(i) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} i & 0 \\ 0 & 2+3i \end{pmatrix}.$$

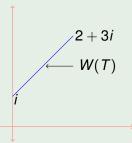
Then W(T) is the line segment joining i and 2 + 3i.

Example 7

(i) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} i & 0 \\ 0 & 2+3i \end{pmatrix}.$$

Then W(T) is the line segment joining i and 2 + 3i.



Example 8

(ii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1+i & 1 \\ 0 & 1+i \end{pmatrix}.$$

Example 8

(ii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1+i & 1 \\ 0 & 1+i \end{pmatrix}.$$

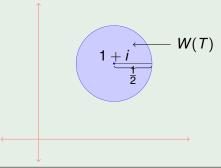
Then W(T) is the circular disc with center at 1 + i and radius $\frac{1}{2}$.

Example 8

(ii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1+i & 1 \\ 0 & 1+i \end{pmatrix}.$$

Then W(T) is the circular disc with center at 1 + i and radius $\frac{1}{2}$.



Example 9

(iii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1 & 1+i \\ 0 & -1 \end{pmatrix}.$$

Example 9

(iii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1 & 1+i \\ 0 & -1 \end{pmatrix}.$$

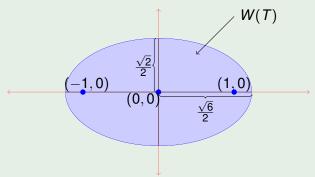
Then W(T) is the ellipse as shown in the following picture.

Example 9

(iii) Let T be the linear operator on \mathbb{C}^2 defined by the matrix

$$T = \begin{pmatrix} 1 & 1+i \\ 0 & -1 \end{pmatrix}.$$

Then W(T) is the ellipse as shown in the following picture.



In case the dimension is greater than 2 then the numerical range is not necessarily ellipse.

In case the dimension is greater than 2 then the numerical range is not necessarily ellipse.

Example 10

Let T be the linear operator on \mathbb{C}^3 defined by the matrix

$$T = \begin{pmatrix} 2i & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & -1-i \end{pmatrix}.$$

In case the dimension is greater than 2 then the numerical range is not necessarily ellipse.

Example 10

Let T be the linear operator on \mathbb{C}^3 defined by the matrix

$$T = \begin{pmatrix} 2i & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & -1-i \end{pmatrix}.$$

Then W(T) is the convex hull of the points 2i, 1 + i and -1 - i.

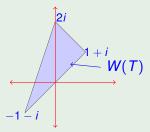
In case the dimension is greater than 2 then the numerical range is not necessarily ellipse.

Example 10

Let T be the linear operator on \mathbb{C}^3 defined by the matrix

$$T = \begin{pmatrix} 2i & 0 & 0 \\ 0 & 1+i & 0 \\ 0 & 0 & -1-i \end{pmatrix}.$$

Then W(T) is the convex hull of the points 2i, 1 + i and -1 - i.

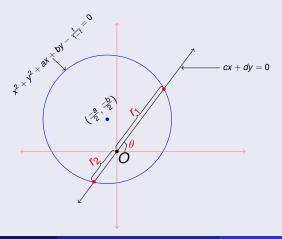


Theorem 11

(Toeplitz-Hausdorff Theorem) The numerical range W(T) of a bounded linear operator T defined on a Hilbert space $\mathcal H$ is always convex.

- Let $\xi, \eta \in W(T)$, where $\xi = \langle Tf, f \rangle, ||f|| = 1$, $\eta = \langle Tg, g \rangle, ||g|| = 1$.
- For t = 0 or t = 1, $(1 t)\xi + t\eta \in W(T)$.
- Consider $t \in (0, 1)$.
- For each $\lambda \in \mathbb{C}$, $\frac{f+\lambda g}{\|f+\lambda g\|} \in \mathcal{S}_{\mathcal{H}}$.
- $\bullet \ \{(1-t)\xi+t\eta\} = \langle T_{\frac{\|f+\lambda g\|}{\|f+\lambda g\|}}, \frac{(f+\lambda g)}{\|f+\lambda g\|} \rangle.$
- $\Rightarrow |\lambda|^2 + \frac{1}{(1-t)(\xi-\eta)} [2\{(1-t)\xi + t\eta\} Re(\overline{\lambda}\langle f,g\rangle) 2Re(\overline{\lambda}\langle Tf,g\rangle)] \frac{t}{1-t} = 0.$

- $\Rightarrow |\lambda|^2 + C\lambda + D\overline{\lambda} \frac{t}{1-t} = 0$, where C and D are complex constants independent of λ .
 - Considering $\lambda = x + iy$, $x^2 + y^2 + ax + by \frac{t}{1-t} = 0$ and cx + dy = 0.



 \Rightarrow There exists two $\lambda \in \mathbb{C}$ such that

$$(1-t)\xi + t\eta = \langle Th, h \rangle$$
, where $h = \frac{f + \lambda g}{\|f + \lambda g\|}$.

 \Rightarrow The line segment joining ξ and η is in W(T).

١,

Proof.

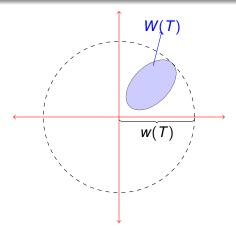
Another proof.

- Let $\xi, \eta \in W(T)$, where $\xi = \langle Tf, f \rangle, \|f\| = 1$, $\eta = \langle Tg, g \rangle, \|g\| = 1$.
- Let V be the subspace spanned by f and g, and P be the orthogonal projection of \mathcal{H} on V so that Pf = f and Pg = g.
- Consider $PTP: V \longrightarrow V$ so that $\langle PTPf, f \rangle = \langle Tf, f \rangle$ and $\langle PTPg, g \rangle = \langle Tg, g \rangle$.
- W(PTP) is an ellipse and W(PTP) contains the line segment joining α and β , and W(PTP) is contained in W(T).

We next use numerical radius to study the numerical range of some special class of operators.

Definition 12

The numerical radius w(T) of an operator T on \mathcal{H} is defined as $w(T) = \sup\{|\langle Tx, x \rangle| : x \in \mathcal{H}, ||x|| = 1\}.$

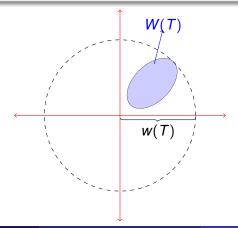


We next use numerical radius to study the numerical range of some special class of operators.

Definition 13

The numerical radius w(T) of an operator T on \mathcal{H} is defined as

$$w(T) = \sup\{|\langle Tx, x \rangle| : x \in \mathcal{H}, ||x|| = 1\}.$$



- Numerical radius is the radius of the smallest circle centred at origin containing the numerical range W(T).
- The spectral radius r(T) of an operator is defined as

$$r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}.$$

• $r(T) \le w(T) \le ||T||$.

Theorem 14

- (i) T is selfadjoint iff W(T) is real.
- (ii) If T is selfadjoint then W(T) = [m, M], where $m = \inf\{\langle Tx, x \rangle : ||x|| = 1\}$ and $M = \sup\{\langle Tx, x \rangle : ||x|| = 1\}$.
- (iii) If T is selfadjoint then $||T|| = w(T) = \max\{|m|, |M|\}$, where $m = \inf\{\langle Tx, x \rangle : ||x|| = 1\}$ and $M = \sup\{\langle Tx, x \rangle : ||x|| = 1\}$.

Proof.

(i)

- If T is selfadjoint, then $\forall x \in \mathcal{H}$, $\langle Tx, x \rangle = \langle x, Tx \rangle = \overline{\langle Tx, x \rangle}$. Hence W(T) is real.
- if $\langle Tx, x \rangle$ is real for all $x \in \mathcal{H}$, we have $\langle Tx, x \rangle \langle x, Tx \rangle = 0 = \langle (T T^*)x, x \rangle$. Thus $T T^* = 0$ or $T = T^*$.

(ii)

 As the numerical range is a bounded subset of the reals so the result follows trivially.

Proof.

(iii)

- $w(T) = \sup\{|m|, |M|\}.$
- For any real $\lambda \neq 0$, $4\|Tx\|^2 = \langle T(\lambda x + \lambda^{-1}Tx), \lambda x + \lambda^{-1}Tx \rangle \langle T(\lambda x \lambda^{-1}Tx), \lambda x \lambda^{-1}Tx \rangle$
- $4\|Tx\|^2 \le w(T) \left[\|\lambda x + \lambda^{-1} Tx\|^2 + \|\lambda x \lambda^{-1} Tx\|^2 \right] = 2w(T) \left(\lambda^2 \|x\|^2 + \lambda^{-2} \|Tx\|^2 \right).$
- If $x \neq 0$, then taking $\lambda^2 = \frac{\|Tx\|}{\|x\|}$ we get $\|Tx\| \leq w(T)\|x\|$.
- Thus for all $x \in \mathcal{H}$, we get $||Tx|| \le w(T)||x||$.
- $\bullet \|T\| \leq w(T)$
- $||T|| = w(T) = \max\{|m|, |M|\}.$

Theorem 15

If
$$w(T) = ||T||$$
, then $r(T) = ||T||$.

- Let w(T) = ||T|| = 1.
- Then there is a sequence of unit vectors $\{x_n\}$ such that $\langle Tx_n, x_n \rangle \to \lambda \in W(T), |\lambda| = 1.$
- From $|\langle Tx_n, x_n \rangle| \le ||Tx_n|| \le 1$, we have $||Tx_n|| \to 1$.
- $\lambda \in \sigma_{app}(T)$ and r(T) = 1.

Theorem 16

If W(T) is a line segment then T is normal.

- Let T be a bounded linear operator such that W(T) is a line segment.
- Suppose that λ is a point on the line segment with inclination θ .
- Then $W(e^{-i\theta}(T-\lambda I))$ is contained in the real axis.
- Thus $e^{-i\theta}(T \lambda I)$ is selfadjoint and so $[e^{-i\theta}(T \lambda I)]^* = e^{-i\theta}(T \lambda I)$.
- $T^* = \overline{\lambda}I + e^{-2i\theta}(T \lambda I)$.
- $TT^* = \overline{\lambda}T + e^{-2i\theta}T(T \lambda I) = T^*T$.
- T is normal.

The class of normal operators have some nice properties related to numerical range and numerical radius.

Theorem 17

Let T be a normal operator. Then

- (i) w(T) = ||T||.
- (ii) w(T) = r(T).
- (iii) $\overline{W(T)} = co(\sigma(T))$.

Theorem 18

In finite dimensional space, the numerical range of a normal operator is a polygon.

- Let T be normal operator acts on a finite dimensional space \mathcal{H} .
- Thus W(T) is closed.
- It follows from Theorem17 (iii) that $W(T) = co(\sigma(T))$.
- As \mathcal{H} is finite dimensional, $\sigma(T)$ contains atmost finitely many elements.
- So W(T) is a polygon.

Remark 1

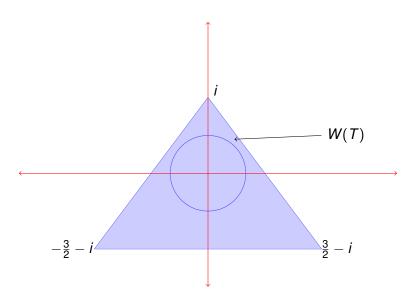
- (i) If T is unitary then W(T) is a polygon inscribed in the unit circle.
- (ii) There exist operator T which is not normal but W(T) is a polygon.

Example 19

• Consider $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and

$$B = \begin{pmatrix} i & 0 & 0 \\ 0 & \frac{3}{2} - i & 0 \\ 0 & 0 & -\frac{3}{2} - i \end{pmatrix}.$$

- Then $W(T) = co(W(A) \cup W(B)) = co\{i, \frac{3}{2} i, -\frac{3}{2} i\}.$
- This is a polygon but *T* is not normal.



Numerical radius inequalities

Inequality 20

(Classical Numerical radius inequalities)

• Let $T \in \mathcal{B}(\mathcal{H})$, then

$$\frac{1}{2}||T|| \le w(T) \le ||T||. \tag{1}$$

• Moreover, if T is normal, then w(T) = ||T|| = r(T). If $T^2 = 0$, then $w(T) = \frac{1}{2}||T||$.

First, we recall the following.

Definition 21

A function $f: I \to \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is said to be **convex** if, for all $x_1, x_2 \in I$ and for all $\lambda \in [0, 1]$, the following inequality holds:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

First, we recall the following.

Definition 21

A function $f: I \to \mathbb{R}$ defined on an interval $I \subseteq \mathbb{R}$ is said to be **convex** if, for all $x_1, x_2 \in I$ and for all $\lambda \in [0, 1]$, the following inequality holds:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

In [14], Kittaneh gives a refined upper and lower bound of (1) using Cartesian decomposition and the convexity of functions.

Inequality 22

(A refinement of Classical Numerical radius inequalities) If $T \in \mathcal{B}(\mathcal{H})$, then

$$\frac{1}{4} \|T^*T + TT^*\| \le w^2(T) \le \frac{1}{2} \|T^*T + TT^*\|. \tag{2}$$

- Suppose that T = B + iC is the Cartesian decomposition of the operator A.
- Let $x \in \mathcal{H}$ be arbitrary.
- It follows from the convexity of the function $f(t) = t^2$ that

$$\begin{aligned} |\langle Tx, x \rangle|^2 &= \langle Bx, x \rangle^2 + \langle Cx, x \rangle^2 \geq \frac{1}{2} (|\langle Bx, x \rangle| + |\langle Cx, x \rangle|)^2 \\ &\geq \frac{1}{2} |\langle (B \pm C)x, x \rangle|^2. \end{aligned}$$

Proof.

So

$$\begin{split} w^2(T) &= \sup \left\{ |\langle Tx, x \rangle|^2 : x \in \mathcal{H}, \|x\| = 1 \right\} \\ &\geq \frac{1}{2} \sup \left\{ |\langle (B \pm C)x, x \rangle|^2 : x \in \mathcal{H}, \|x\| = 1 \right\} \\ &= \frac{1}{2} w(B \pm C)^2 = \frac{1}{2} \|B \pm C\|^2 = \frac{1}{2} \|(B \pm C)^2\| \end{split}$$

Hence

$$egin{aligned} 2w^2(T) &\geq rac{1}{2} \left\| (B+C)^2
ight\| + rac{1}{2} \left\| (B-C)^2
ight\| \ &\geq rac{1}{2} \left\| (B+C)^2 + (B-C)^2
ight\| \ &= \left\| B^2 + C^2
ight\| = rac{1}{2} \left\| T^*T + TT^*
ight\|. \end{aligned}$$

Proof.

• For every unit vector $x \in \mathcal{H}$, it follows from the Cauchy-Schwarz inequality that

$$\begin{aligned} |\langle Tx, x \rangle|^2 &= \langle Bx, x \rangle^2 + \langle Cx, x \rangle^2 \le \|Bx\|^2 + \|Cx\|^2 \\ &= \left\langle B^2 x, x \right\rangle + \left\langle C^2 x, x \right\rangle \\ &= \left\langle \left(B^2 + C^2 \right) x, x \right\rangle. \end{aligned}$$

Therefore,

$$w^{2}(A) = \sup \left\{ |\langle Tx, x \rangle|^{2} : x \in \mathcal{H}, ||x|| = 1 \right\}$$

$$\leq \sup \left\{ \left\langle \left(B^{2} + C^{2} \right) x, x \right\rangle : x \in \mathcal{H}, ||x|| = 1 \right\}$$

$$= \left\| B^{2} + C^{2} \right\| = \frac{1}{2} ||T^{*}T + TT^{*}||$$

Now, we present the following nontrivial improvement of the first inequality in (1), that is, $\frac{1}{2}||T|| \le w(T)$ and the second inequality in (2). Note an elementary identity that $\max\{a,b\} = \frac{1}{2}\left(a+b+|a-b|\right)$ for $a,b\in\mathbb{R}$.

Inequality 23

Let $T \in \mathcal{B}(\mathcal{H})$, then

$$w(T) \geq \frac{\|T\|}{2} + \frac{\|\operatorname{Re}(T)\| - \|\operatorname{Im}(T)\|\|}{2}.$$
 (3)

- Let $x \in \mathcal{H}$ with ||x|| = 1.
- Then from the Cartesian decomposition of T we have, $|\langle Tx, x \rangle|^2 = |\langle \text{Re}(T)x, x \rangle|^2 + |\langle \text{Im}(T)x, x \rangle|^2$.
- This implies $w(T) \ge \|\operatorname{Re}(T)\|$ and $w(T) \ge \|\operatorname{Im}(T)\|$.

Proof.

Thus,

$$w(T) \geq \max\{\|\text{Re}(T)\|, \|\text{Im}(T)\|\}$$

$$= \frac{\|\text{Re}(T)\| + \|\text{Im}(T)\|}{2} + \frac{\left| \|\text{Re}(T)\| - \|\text{Im}(T)\| \right|}{2}$$

$$\geq \frac{\|\text{Re}(T) + i\text{Im}(T)\|}{2} + \frac{\left| \|\text{Re}(T)\| - \|\text{Im}(T)\| \right|}{2}$$

$$= \frac{\|T\|}{2} + \frac{\left| \|\text{Re}(T)\| - \|\text{Im}(T)\| \right|}{2}.$$

Corollary 24

Let
$$T \in \mathcal{B}(\mathcal{H})$$
. If $w(T) = \frac{\|T\|}{2}$, then $\|\text{Re}(T)\| = \|\text{Im}(T)\| = \frac{\|T\|}{2}$.

- From Inequality (3), we have $w(T) \geq \frac{\|T\|}{2} + \frac{\|\operatorname{Re}(T)\| \|\operatorname{Im}(T)\|\|}{2} \geq \frac{\|T\|}{2}$.
- This implies that if $w(T) = \frac{\|T\|}{2}$, then $\|\text{Re}(T)\| = \|\text{Im}(T)\|$.
- Also $\|\text{Re}(T)\| \le w(T) = \frac{\|T\|}{2} = \frac{\|\text{Re}(T) + i\text{Im}(T)\|}{2} \le \frac{\|\text{Re}(T)\| + \|\text{Im}(T)\|}{2} = \|\text{Re}(T)\|$
- So $\|\operatorname{Re}(T)\| = \|\operatorname{Im}(T)\| = \frac{\|T\|}{2}$.

We next derive an improvement of the first inequality in (2).

Theorem 25

Let $T \in \mathcal{B}(\mathcal{H})$, then

$$w^{2}(T) \geq \frac{1}{4} \|T^{*}T + TT^{*}\| + \frac{1}{2} \|\operatorname{Re}(T)\|^{2} - \|\operatorname{Im}(T)\|^{2} \|.$$
 (4)

- Let $x \in \mathcal{H}$ with ||x|| = 1.
- Then from the Cartesian decomposition of *A* we get, $|\langle Tx, x \rangle|^2 = |\langle \text{Re}(T)x, x \rangle|^2 + |\langle \text{Im}(T)x, x \rangle|^2$.
- This implies $w(T) \ge \|\operatorname{Re}(T)\|$ and $w(T) \ge \|\operatorname{Im}(T)\|$.

Proof.

So

$$\begin{split} w^2(T) & \geq & \max\left\{\|\mathrm{Re}(T)\|^2, \|\mathrm{Im}(T)\|^2\right\} \\ & = & \frac{\|\mathrm{Re}(T)\|^2 + \|\mathrm{Im}(T)\|^2}{2} + \frac{\left|\|\mathrm{Re}(T)\|^2 - \|\mathrm{Im}(T)\|^2\right|}{2} \\ & = & \frac{\|(\mathrm{Re}(T))^2\| + \|(\mathrm{Im}(T))^2\|}{2} + \frac{\left|\|\mathrm{Re}(T)\|^2 - \|\mathrm{Im}(T)\|^2\right|}{2} \\ & \geq & \frac{\|(\mathrm{Re}(T))^2 + (\mathrm{Im}(T))^2\|}{2} + \frac{\left|\|\mathrm{Re}(T)\|^2 - \|\mathrm{Im}(T)\|^2\right|}{2} \\ & = & \frac{1}{4} \|T^*T + TT^*\| + \frac{\left|\|\mathrm{Re}(T)\|^2 - \|\mathrm{Im}(T)\|^2\right|}{2}. \end{split}$$

For any $x, y \in \mathcal{H}$, the Cauchy-Schwarz inequality asserts that

$$|\langle x,y\rangle| \leq ||x|| ||y||.$$

This classical result was later refined in an elegant form by Buzano [8], as stated below.

For any $x, y \in \mathcal{H}$, the Cauchy-Schwarz inequality asserts that

$$|\langle x,y\rangle| \leq ||x|| ||y||.$$

This classical result was later refined in an elegant form by Buzano [8], as stated below.

Inequality 26

Let $x, y, e \in \mathcal{H}$ with ||e|| = 1. Then

$$|\langle x, e \rangle \langle e, y \rangle| \leq \frac{1}{2} (\|x\| \|y\| + |\langle x, y \rangle|).$$
 (5)

For any $x, y \in \mathcal{H}$, the Cauchy-Schwarz inequality asserts that

$$|\langle x,y\rangle| \leq ||x|| ||y||.$$

This classical result was later refined in an elegant form by Buzano [8], as stated below.

Inequality 26

Let $x, y, e \in \mathcal{H}$ with ||e|| = 1. Then

$$|\langle x, e \rangle \langle e, y \rangle| \le \frac{1}{2} (\|x\| \|y\| + |\langle x, y \rangle|).$$
 (5)

Abu-Omar and Kittaneh in [1] proved the following inequality

$$w^{2}(T) \leq \frac{1}{2}w(T^{2}) + \frac{1}{4}\left\||T|^{2} + |T^{*}|^{2}\right\|.$$
 (6)

November 1, 2025

By using Buzano's inequality we extend the above inequality. First we need the following inequality.

Inequality 27

(Hölder-McCarthy inequality)

Let $T \in \mathcal{B}(\mathcal{H})$ be positive and let $x \in \mathcal{H}$ with ||x|| = 1. Then

$$\langle Tx, x \rangle^r \le \langle T^r x, x \rangle, \quad r \ge 1.$$
 (7)

The inequality is reversed when $0 \le r \le 1$.

Inequality 28

Let $T \in \mathcal{B}(\mathcal{H})$ and let $x \in \mathcal{H}$ with ||x|| = 1. Then

$$|\langle Tx, x \rangle|^{2r} \le \frac{1}{2} |\langle T^2x, x \rangle|^r + \frac{1}{4} \left\langle (|T|^{2r} + |T^*|^{2r})x, x \right\rangle \tag{8}$$

for all $r \geq 1$.

- By considering a = Tx, $b = T^*x$ and e = x in (5), we get $|\langle Tx, x \rangle|^2 \le \frac{1}{2} \left(|\langle T^2x, x \rangle| + ||Tx|| ||T^*x|| \right)$.
- From the convexity of the real function $f(t) = t^r$ $(r \ge 1)$, we derive that

$$\begin{aligned} & |\langle Tx, x \rangle|^{2r} \\ & \leq & \frac{1}{2} \left(|\langle T^2x, x \rangle|^r + \|Tx\|^r \ \|T^*x\|^r \right) \end{aligned}$$

Proof.

Then

$$\begin{split} &|\langle Tx, x\rangle|^{2r}\\ &\leq \frac{1}{2}\left(|\langle T^2x, x\rangle|^r + \frac{1}{2}(\|Tx\|^{2r} + \|T^*x\|^{2r})\right)\\ &= \frac{1}{2}\left(|\langle T^2x, x\rangle|^r + \frac{1}{2}(\langle |T|^2x, x\rangle^r + \langle |T^*|^2x, x\rangle^r)\right)\\ &\leq \frac{1}{2}\left(|\langle T^2x, x\rangle|^r + \frac{1}{2}(\langle |T|^{2r}x, x\rangle + \langle |T^*|^{2r}x, x\rangle)\right) \text{ (by(7))}\\ &= \frac{1}{2}|\langle T^2x, x\rangle|^r + \frac{1}{4}\left\langle (|T|^{2r} + |T^*|^{2r})x, x\right\rangle. \end{split}$$

Inequality 29

Suppose that $T \in \mathcal{B}(\mathcal{H})$. Then

$$w^{2r}(T) \leq \frac{\alpha}{2}w^{r}(T^{2}) + \left\|\frac{\alpha}{4}|T|^{2r} + \left(1 - \frac{3}{4}\alpha\right)|T^{*}|^{2r}\right\|$$
(9)

for all $r \ge 1$ and for all $\alpha \in [0, 1]$.

- Let $x \in \mathcal{H}$ be a unit vector.
- It follows from the Cauchy–Schwarz inequality that $|\langle Tx, x \rangle| = \alpha |\langle Tx, x \rangle| + (1 \alpha) |\langle Tx, x \rangle| \le \alpha |\langle Tx, x \rangle| + (1 \alpha) ||T^*x||.$

Proof.

• From the convexity of $f(t) = t^{2r}$ $(r \ge 1)$, we infer that

$$\begin{aligned} &|\langle Tx, x \rangle|^{2r} \\ &\leq \alpha |\langle Tx, x \rangle|^{2r} + (1 - \alpha) ||T^*x||^{2r} \\ &\leq \alpha |\langle Tx, x \rangle|^{2r} + (1 - \alpha) \langle |T^*|^{2r}x, x \rangle \text{ (by (7))} \\ &\leq \frac{\alpha}{2} |\langle T^2x, x \rangle|^r + \frac{\alpha}{4} \left\langle (|T|^{2r} + |T^*|^{2r})x, x \right\rangle + (1 - \alpha) \langle |T^*|^{2r}x, x \rangle \\ &\qquad \qquad \text{(by 8)} \end{aligned}$$

$$&= \frac{\alpha}{2} |\langle T^2x, x \rangle|^r + \left\langle \left\{ \frac{\alpha}{4} \left(|T|^{2r} + |T^*|^{2r} \right) + (1 - \alpha) |T^*|^{2r} \right\} x, x \right\rangle$$

$$&= \frac{\alpha}{2} |\langle T^2x, x \rangle|^r + \left\langle \left\{ \frac{\alpha}{4} |T|^{2r} + \left(1 - \frac{3}{4} \alpha \right) |T^*|^{2r} \right\} x, x \right\rangle$$

$$&\leq \frac{\alpha}{2} w^r (T^2) + \left\| \frac{\alpha}{4} |T|^{2r} + \left(1 - \frac{3}{4} \alpha \right) |T^*|^{2r} \right\|.$$

November 1, 2025

Proof.

 Taking the supremum over all unit vectors x ∈ H we obtain inequality (9).

Remark 2

It is remarkable that with

$$T = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

we observe that the inequality 9 for r = 1 generalize and improve inequality (6).

Inequality 30

(Mixed Cauchy-Schwarz inequality)

Let $T \in \mathcal{B}(\mathcal{H})$. Then

$$|\langle Tx, x \rangle| \le \langle |T|x, x \rangle^{1/2} \ \langle |T^*|x, x \rangle^{1/2}.$$

for all $x \in \mathcal{H}$,

Kato [13] generalized the mixed Cauchy-Schwarz inequality to a bounded linear operator $T \in \mathcal{B}(\mathcal{H})$. He proved that

$$|\langle Tx, y \rangle|^2 \le \langle |T|^{2\alpha} x, x \rangle \langle |T^*|^{2(1-\alpha)} y, y \rangle$$
 (10)

for all $x, y \in \mathcal{H}$ and all $\alpha \in [0, 1]$.

Next, Kittaneh gives an extension of Kato's generalized mixed Cauchy-Schwarz inequality. It states as follows.

Inequality 31

[16, Th. 1] Let $T \in \mathcal{B}(\mathcal{H})$ and let $x,y \in \mathcal{H}$. If f and g are two non-negative continuous functions on $[0,\infty)$ satisfying $f(t)g(t)=t,\ t\geq 0$, then

$$\left|\left\langle Tx,y\right\rangle \right|^{2}\leq\left\langle f^{2}(|T|)x,x\right\rangle \left\langle g^{2}(|T^{*}|)y,y\right\rangle .\tag{11}$$

By using mixed Cauchy-Schwarz inequality, we obtain the following refined numerical radius inequality of (2).

Inequality 32

For an operator $T \in \mathcal{B}(\mathcal{H})$, it holds that

$$w^{2}(T) \leq \frac{1}{4} \left\| |T|^{2} + |T^{*}|^{2} \right\| + \frac{1}{2} w(|T||T^{*}|). \tag{12}$$

Proof.

- Let $x \in \mathcal{H}$ be a unit vector.
- It follows from the inequality (10) that $|\langle Tx, x \rangle|^2 \le \langle |T|x, x \rangle \langle |T^*|x, x \rangle$.
- An application of the Buzano inequality gives that

$$\langle |T^*|x,x\rangle\langle x,|T|x\rangle \leq \frac{1}{2}|||T|x|||||T^*|x|| + \frac{1}{2}|\langle |T^*|x,|T|x\rangle|.$$

November 1, 2025

Proof.

Hence

$$\begin{split} &|\langle Tx, x \rangle|^{2} \\ &\leq \frac{1}{4} \left(\||T|x\|^{2} + \||T^{*}|x\|^{2} \right) + \frac{1}{2} |\langle |T||T^{*}|x, x \rangle| \\ &= \frac{1}{4} \left(\left\langle |T|^{2}x, x \right\rangle + \left\langle |T^{*}|^{2}x, x \right\rangle \right) + \frac{1}{2} |\langle |T||T^{*}|x, x \rangle| \\ &= \frac{1}{4} \left\langle \left(|T|^{2} + |T^{*}|^{2} \right) x, x \right\rangle + \frac{1}{2} |\langle |T||T^{*}|x, x \rangle| \\ &\leq \frac{1}{4} \left\| |T|^{2} + |T^{*}|^{2} \right\| + \frac{1}{2} w \left(|T||T^{*}| \right). \end{split}$$

• Taking the supremum over ||x|| = 1 we obtain that

$$w^{2}(T) \leq \frac{1}{4} ||T|^{2} + |T^{*}|^{2} || + \frac{1}{2} w(|T||T^{*}|).$$

Remark 3

The inequality in (12) refines the second inequality in (2). As $w(|T||T^*|) \le ||T||T^*|| = ||T^2||$, so

$$\frac{1}{4} \left\| |T|^2 + |T^*|^2 \right\| + \frac{1}{2} w (|T||T^*|)
\leq \frac{1}{4} \left\| |T|^2 + |T^*|^2 \right\| + \frac{1}{2} \left\| T^2 \right\|
\leq \frac{1}{4} \left\| |T|^2 + |T^*|^2 \right\| + \frac{1}{4} \left\| |T|^2 + |T^*|^2 \right\|
= \frac{1}{2} \left\| |T|^2 + |T^*|^2 \right\|.$$

Next, we present another refined numerical radius inequality by using generalized Cauchy-Schwarz inequality and convexity of a function $f(t) = t^{2r}$.

Inequality 33

Let $T \in \mathcal{B}(\mathcal{H})$. Then

$$w^{2r}(T) \le \|\alpha|T|^{2r} + (1-\alpha)|T^*|^{2r}\|$$

for all $r \ge 1$ and $0 \le \alpha \le 1$. In particular,

$$w^{2}(T) \leq \min_{0 \leq \alpha \leq 1} \left\| \alpha |T|^{2} + (1 - \alpha) |T^{*}|^{2} \right\|.$$
 (13)

Inequalities using Cauchy-Schwarz inequality and it's generalizations

Remark 4

(13) generalizes the second inequality in (2) to the form

$$w^{2}(T) \leq \|\alpha T^{*}T + (1 - \alpha)TT^{*}\|, \quad \alpha \in [0, 1].$$

However, the first inequality cannot be generalized to the form

$$\frac{1}{2} \|\alpha T^* T + (1 - \alpha) T T^* \| \le w^2(T), \quad \alpha \in [0, 1]$$

- Consider $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
- Then $\frac{3}{8} = \frac{1}{2} \|\alpha T^* T + (1 \alpha) T T^* \| \not\leq w^2(T) = \frac{1}{4}$ for $\alpha = \frac{1}{4}$.

Inequality 34

(Bernau and Smithies inequality)

Let $T \in \mathcal{B}(\mathcal{H})$. Then

$$||Tx||^2 + |\langle T^2x, x \rangle| \le 2w(T)||Tx|||x||,$$

for all $x \in \mathcal{H}$.

Proof.

- Let λ and θ be real numbers, $\lambda \neq 0$.
- Then we have

$$||Tx||^2 + e^{2i\theta} \langle T^2 x, x \rangle = \frac{1}{2} (\lambda e^{2i\theta} T^2 x + \lambda^{-1} e^{i\theta} Tx, \lambda e^{i\theta} Tx + \lambda^{-1} x) - \frac{1}{2} (\lambda e^{2i\theta} T^2 x - \lambda^{-1} e^{i\theta} Tx, \lambda e^{i\theta} Tx - \lambda^{-1} x).$$

Proof.

• Since $|\langle Ty, y \rangle| \le w(T) ||y||^2$ for all y, it follows that

$$\begin{aligned} &|||Tx||^{2} + e^{2i\theta} \langle T^{2}x, x \rangle| \\ &\leq \frac{1}{2} w(T) (||\lambda e^{i\theta} Tx + \lambda^{-1}x||^{2} + ||\lambda e^{i\theta} Tx - \lambda^{-1}x||^{2}) \\ &= w(T) (\lambda^{2} ||Tx||^{2} + \lambda^{-2} ||x||^{2}). \end{aligned}$$

- If $Tx \neq 0$, we choose θ so that $e^{2i\theta}(T^2x, x) = |(T^2x, x)|$, and λ so that $\lambda^2 ||Tx|| = ||x||$.
- Therefore, $||Tx||^2 + |\langle T^2x, x \rangle| \le 2w(T)||Tx|||x||$.

٦

Inequality 35

(A generalization Bernau and Smithies inequality)

Let $A, T, B \in \mathcal{B}(\mathcal{H})$. Then

$$|\langle A^*TBx, x\rangle| + |\langle B^*TAx, x\rangle| \le 2w(T)||Ax||||Bx||,$$

for all $x \in \mathcal{H}$.

Proof.

• Suppose that $x \in \mathcal{H}$ and θ, ϕ are real numbers such that

$$e^{i\phi}\langle B^* TAx, x \rangle = |\langle B^* TAx, x \rangle|,$$

$$e^{2i\theta}\langle e^{-i\phi}A^*TBx, x\rangle = |\langle e^{-i\phi}A^*TBx, x\rangle| = |\langle A^*TBx, x\rangle|.$$

• Consider a nonzero real number λ .

Proof.

Then

$$\begin{split} 2e^{2i\theta} \left\langle \mathit{TBx}, e^{i\phi} \mathit{Ax} \right\rangle + 2e^{i\phi} \langle \mathit{TAx}, \mathit{Bx} \rangle \\ &= \left\langle \left\langle e^{i\theta} \mathit{T} \left(\lambda e^{i\theta} \mathit{Bx} + \frac{1}{\lambda} e^{i\phi} \mathit{Ax} \right), \lambda e^{i\theta} \mathit{Bx} + \frac{1}{\lambda} e^{i\phi} \mathit{Ax} \right\rangle \\ &- \left\langle e^{i\theta} \mathit{T} \left(\lambda e^{i\theta} \mathit{Bx} - \frac{1}{\lambda} e^{i\phi} \mathit{Ax} \right), \lambda e^{i\theta} \mathit{Bx} - \frac{1}{\lambda} e^{i\phi} \mathit{Ax} \right\rangle. \end{split}$$

Hence,

$$\begin{split} 2e^{2i\theta} \left\langle e^{-i\phi} A^* TBx, x \right\rangle + 2e^{i\phi} \left\langle B^* TAx, x \right\rangle \\ &= \left\langle e^{i\theta} T \left(\lambda e^{i\theta} Bx + \frac{1}{\lambda} e^{i\phi} Ax \right), \lambda e^{i\theta} Bx + \frac{1}{\lambda} e^{i\phi} Ax \right\rangle \\ &- \left\langle e^{i\theta} T \left(\lambda e^{i\theta} Bx - \frac{1}{\lambda} e^{i\phi} Ax \right), \lambda e^{i\theta} Bx - \frac{1}{\lambda} e^{i\phi} Ax \right\rangle. \end{split}$$

Proof.

So,

$$\begin{aligned} 2 \left| \left\langle A^* T B x, x \right\rangle \right| + 2 \left| \left\langle B^* T A x, x \right\rangle \right| \\ &= \left\langle e^{i\theta} T \left(\lambda e^{i\theta} B x + \frac{1}{\lambda} e^{i\phi} A x \right), \lambda e^{i\theta} B x + \frac{1}{\lambda} e^{i\phi} A x \right\rangle \\ &- \left\langle e^{i\theta} T \left(\lambda e^{i\theta} B x - \frac{1}{\lambda} e^{i\phi} A x \right), \lambda e^{i\theta} B x - \frac{1}{\lambda} e^{i\phi} A x \right\rangle \end{aligned}$$

Therefore,

$$\begin{split} &2\left|\left\langle A^{*}TBx,x\right\rangle \right|+2\left|\left\langle B^{*}TAx,x\right\rangle \right|\\ &\leq \mid\left\langle e^{i\theta}T\left(\lambda e^{i\theta}Bx+\frac{1}{\lambda}e^{i\phi}Ax\right),\lambda e^{i\theta}Bx+\frac{1}{\lambda}e^{i\phi}Ax\right\rangle \mid\\ &+\left|\left\langle e^{i\theta}T\left(\lambda e^{i\theta}Bx-\frac{1}{\lambda}e^{i\phi}Ax\right),\lambda e^{i\theta}Bx-\frac{1}{\lambda}e^{i\phi}Ax\right\rangle \right|. \end{split}$$

Proof.

Hence,

$$\begin{split} &2\left|\left\langle A^{*}TBx,x\right\rangle\right|+2\left|\left\langle B^{*}TAx,x\right\rangle\right| \\ &\leq w(T)\left(\left\|\lambda e^{i\theta}Bx+\frac{1}{\lambda}e^{i\phi}Ax\right\|^{2}+\left\|\lambda e^{i\theta}Bx-\frac{1}{\lambda}e^{i\phi}Ax\right\|^{2}\right). \end{split}$$

Thus,

$$|\langle A^*TBx,x\rangle|+|\langle B^*TAx,x\rangle|\leq w(T)\left(\lambda^2\|Bx\|^2+\frac{1}{\lambda^2}\|Ax\|^2\right).$$

• If $||Bx|| \neq 0$, then we can choose $\lambda^2 = \frac{||Ax||}{||Bx||}$ to get

$$|\langle A^*TBx, x\rangle| + |\langle B^*TAx, x\rangle| \le 2w(T)||Ax|| ||Bx||.$$

• Clearly, this inequality is valid when ||Bx|| = 0.

Remark 5

Considering A = T and B = I in the above inequality, we get the Bernau and Smithies inequality

$$\|\mathit{Tx}\|^2 + \left|\left\langle \mathit{T}^2x, x\right\rangle\right| \leq 2w(\mathit{T})\|\mathit{Tx}\|\|x\|, \quad x \in \mathcal{H}.$$

By using this generalization we get the following numerical radius inequalities for product of three operators.

Theorem 36

Let $A, T, B \in \mathcal{B}(\mathcal{H})$. Then

(i)
$$c(A^*TB) + w(B^*TA) \le 2w(T)||A||||B||$$
.

(ii)
$$w(A^*TB) + c(B^*TA) \le 2w(T)||A||||B||$$
.

- In this section, we focus on the numerical range of operators acting on a Hilbert space (H, ⟨·,·⟩) equipped with an additional semi-inner product determined by a positive operator A.
- Specifically, this semi-inner product is defined by $\langle x, y \rangle = \langle Ax, y \rangle$ for all x, y in the concerned space.
- $\mathcal{B}_{A^{1/2}}(\mathcal{H}) = \{ T \in \mathcal{B}(\mathcal{H}) : \exists c > 0 \text{ such that } ||Tx||_A \le c ||x||_A \ \forall x \in \mathcal{H} \}.$

Definition 37

(A-Numerical Range) Let $T \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$. The A-numerical range of T, denoted by $W_A(T)$, is defined as the collection of complex scalars $\langle Tx, x \rangle_A$ for $x \in \mathcal{H}$ with $\|x\|_A = 1$, i.e., $W_A(T) = \{\langle Tx, x \rangle_A : x \in \mathcal{H}, \|x\|_A = 1\}$.

• Let $T \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$. Then $W_A(T)$ is a convex subset of \mathbb{C} .

Definition 38

(*A*-eigenvalue) Let $T \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$. Then $\lambda \in \mathbb{C}$ is said to be an *A*-eigenvalue of *T* if there exists $\lambda \in \mathbb{C}$ such that $ATx = \lambda Ax$.

Definition 39

(*A*-reducing eigenvalue) A complex number $\lambda \in \mathbb{C}$ is said to be an *A*-reducing eigenvalue of $T \in \mathcal{B}_A(\mathcal{H})$ if $ATx = \lambda Ax$ and $AT^{\sharp_A}x = \bar{\lambda}Ax$, for some nonzero $x \in \overline{R(A)}$.

Then we have the following results.

- Let λ be in the boundary of $W_A(T)$. If λ is an A-eigenvalue of T then it is an A-reducing eigenvalue of T.
- Let $T \in \mathcal{B}_{\mathcal{A}}(\mathcal{H})$. If λ, μ are distinct A-eigenvalues of T with λ in the boundary of $W_{\mathcal{A}}(T)$ then A-eigenvectors associated with λ and μ are A-orthogonal to each other.
- Let $T \in \mathcal{B}_A(\mathcal{H})$ be an A-selfadjoint operator. If $\lambda \in W_A(T)$ and $T \leq_A \lambda I$ then λ is an A-reducing eigenvalue of T.
- Every corner point of $W_A(T)$ is an A-reducing eigenvalue of T.

Definition 40

(Joint numerical range) For an *n*-tuple $T = (T_1, \dots, T_n) \in \mathbb{B}(\mathcal{H})^n$, the joint numerical range of T is defined as

$$\textbf{\textit{W}}(\textbf{\textit{T}}) = \textbf{\textit{W}}(\textbf{\textit{T}}_1, \cdots, \textbf{\textit{T}}_n) = \left\{ \left(\langle \textbf{\textit{T}}_1 \textbf{\textit{x}}, \textbf{\textit{x}} \rangle, \cdots, \langle \textbf{\textit{T}}_n \textbf{\textit{x}}, \textbf{\textit{x}} \rangle \right) : \textbf{\textit{x}} \in \mathcal{H}, \|\textbf{\textit{x}}\| = 1 \right\}.$$

- The joint numerical range does not always satisfy the convexity property.
- Consider $T_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $T_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ and $T_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- $W(T_1, T_2, T_3)$ is not convex.

Next we state some basic convexity properties of the joint numerical range.

Proposition 41

Let $T = (T_1, \dots, T_n)$ be an n-tuple of operators on \mathcal{H} .

- (i) W(T) is convex if and only if W(T, I) is convex.
- (ii) If W(T) is convex and S_1, S_2, \dots, S_m are in span $\{T_1, \dots, T_n\}$, then $W(S_1, S_2, \dots, S_m)$ is convex.
- (iii) Let $\{S_1, S_2, \dots, S_m\}$ be a basis of span $\{T_1, \dots, T_n\}$. Then W(T) is convex if and only if $W(S_1, S_2, \dots, S_m)$ is convex.

Definition 42

(*C*-numerical range) For $n \times n$ matrices T and C, the C-numerical range is defined as

$$W_C(T) = \{ tr(CU^*TU) : U \text{ is an } n \times n \text{ unitary matrix} \}.$$

Two subclasses of the C-numerical ranges are c-numerical range and k-numerical range.

• For any vector $c=(c_1,c_2,\cdots,c_n)\in\mathbb{C}^n$, the c-numerical range of T is defined as

$$W_c(T) = \begin{cases} \sum_{i=1}^n c_i \langle Tx_i, x_i \rangle : \{x_1, x_2, \cdots, x_n\} \text{ orthonormal basis of } \mathbb{C}^n \end{cases}.$$

• For any $k, 1 \le k \le n$, the k-numerical range is defined as $W_k(T) = \left\{\frac{1}{k}\sum_{i=1}^n \langle Tx_i, x_i \rangle : \{x_1, x_2, \cdots, x_n\} \text{ orthonormal subset of } \mathbb{C}^n \right\}.$

Remark 6

- $W_c(T)$ is $W_C(T)$ for $C = diag(c_1, c_2, \dots, c_n)$, $W_k(T)$ is $W_c(T)$ with $c = (1/k, \dots, 1/k, 0, \dots, 0)$ in \mathbb{C}^n , and $W_k(T)$ with k = 1 is the classical numerical range W(T) of T.
- The C-numerical range of an operator is not always convex.
- For example, consider T = C = diag(0, 1, i), then $W_C(T)$ is not convex.

Although the previous example showed non-convexity, the *C*-numerical range can still be convex for some following particular cases.

- (i) If T and C are 2×2 matrices then $W_C(T)$ is a elliptic disc and hence is convex.
- (ii) If T and C are $n \times n$ matrices and C is Hermitian then $W_C(T)$ is convex.

Definition 43

(*q*-numerical range) For a bounded linear operator T on $\mathcal H$ and a complex number q with $|q| \le 1$, the q-numerical range of T, denoted by $W_q(T)$, is defined as

$$W_q(T) = \{\langle Tx, y \rangle : x, y \in \mathcal{H}, ||x|| = 1, ||y|| = 1, \langle x, y \rangle = q\}.$$

- If q = 1 then $W_q(T)$ reduces to the classical numerical range W(T).
- For $|q| \le 1$, $W_q(T)$ is convex.

- Let T be a bounded linear operator on \mathcal{H} .
- It is well-known that $w(T) \ge \frac{1}{2} ||T^*T + TT^*||^{\frac{1}{2}} \ge \frac{||T||}{2}$.
- A well-known characterization of the numerical range states that $w(T) = \frac{\|T\|}{2}$ if and only if $\overline{W(T)}$ is a circular disk with center at the origin and radius $\frac{\|T\|}{2}$.
- In [2], we proved that $\overline{W(T)}$ is contained in a closed circular disk and contains a semi-circular disk with center at the origin and radius $\frac{1}{2} \|T^*T + TT^*\|^{\frac{1}{2}}$ if and only if the numerical radius attains its lower bound $\frac{1}{2} \|T^*T + TT^*\|^{\frac{1}{2}}$.

Open Question 1

- (1) Does the equality $w(T) = \frac{1}{2} ||T^*T + TT^*||^{\frac{1}{2}}$ imply that $\overline{W(T)}$ is a closed circular disk? If not, then provide an example.
- (2) Does there exist a lower bound, say, I(T), for the numerical radius w(T) which satisfies $w(T) \ge I(T) \ge \frac{1}{2} \|T^*T + TT^*\|^{\frac{1}{2}}$ and the closure of the numerical range is a circular disk with center at origin when $w(T) = I(T) \ge \frac{1}{2} \|T^*T + TT^*\|^{\frac{1}{2}}$?

- Let $T \in \mathcal{M}_n(\mathbb{C})$. Then the numerical radius w(T) satisfies $w(T) \leq ||T||$.
- In [3], we established a generalization and improvement of the above inequality, namely,

$$w(T) \leq \|\alpha T^* T + (1 - \alpha) T T^*\|^{\frac{1}{2}},$$

for all $\alpha \in [0, 1]$.

• It is easy to observe that if T is a normal matrix then $w(T) = \|\alpha T^*T + (1 - \alpha)TT^*\|^{\frac{1}{2}}$, for all $\alpha \in [0, 1]$.

Open Question 2

• It leads us to the question whether the above equality holds for non-normal matrices, for all $\alpha \in [0, 1]$.

- For a normal matrix T, whose $w(T) = \|\alpha T^*T + (1-\alpha)TT^*\|^{\frac{1}{2}}$ for all $\alpha \in [0,1]$, the boundary of the numerical range $\partial W(T)$ is not smooth.
- Also, there exists a non-normal matrix T for which $W(T) = \|\alpha T^*T + (1-\alpha)TT^*\|^{\frac{1}{2}}$ for all $\alpha \in [0,1]$, and the boundary of W(T) is not smooth.
- For example, consider $T = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, then W(T) is a convex hull of $\{z \in \mathbb{C} : |z| \le 1\} \cup \{2\}$, which is not smooth.

In this context, the following two questions arise:

Open Question 3

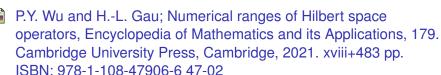
- (1) If $w(T) = \|\alpha T^*T + (1-\alpha)TT^*\|^{\frac{1}{2}}$, for all $\alpha \in [0,1]$, then prove or disprove that the boundary of the numerical range $\partial W(T)$ is not smooth.
- (2) If $w(T) = \|\alpha T^*T + (1 \alpha)TT^*\|^{\frac{1}{2}}$, for some $\alpha \in [0, 1]$, then prove or disprove that the boundary of the numerical range $\partial W(T)$ is not smooth.

References

- A. Abu-Omar and F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math., 45 (2015), no. 4, 1055–1065.
- P. Bhunia and K. Paul, Corrigendum to "Development of inequalities and characterization of equality conditions for the numerical radius", Linear Algebra Appl., 679 (2023), 1?3.
- P. Bhunia and K. Paul, Proper improvement of well-known numerical radius inequalities and their applications, Results Math. 76 (2021), no. 4, Paper No. 177, 12 pp.
- P. Bhunia and K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math., 167 (2021), Paper No. 102959, 11 pp.
- P. Bhunia, K. Paul, and R.K. Nayak, Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices, Math. Inequal. Appl., 24 (2021), no. 1, 167–183.

- P. Bhunia, S.S. Dragomir, M.S. Moslehian and K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer, Cham, 2022.
- P. Bhunia, F. Kittaneh, K. Paul and A. Sen, Anderson's theorem and A-spectral radius bounds for semi-Hilbertian space operators, Linear Algebra Appl., 657 (2023), 147–162.
- M.L. Buzano, Generalizzazione della disiguaglianza di Cauchy–Schwaz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino, 31(1971/73), 405–409 (1974).
- K. C. Das, S. Mazumdar and B. Sims, Restricted numerical range and weak convergence on the boundary of the numerical range, J. math. Phys. Sci., 21 (1987) 35-41.
- K. E. Gustafson and D. K. M. Rao, Numerical range. The field of values of linear operators and matrices, Universitext, Springer-Verlag, New York, 1997.

- P.R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- F. Hausdorff, Der Wertevorrat einer Bilinearform, Math. Z., 3 (1919) 314-316.
- T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125 (1952), 208–212.
- F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), no. 1, 73–80.
- F. Kittaneh, Numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), no. 1, 11–17.
- F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. RIMS Kyoto Univ., 24 (1988) 283–293.
- B. Simon, Trace ideals and their applications, Camrbidge University Press, 1979.



Thanks for your kind attention