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Definition 1
(Numerical range) Let T be a bounded linear operator on the complex
Hilbert space H with inner product ⟨·, ·⟩. The numerical range of an
operator T is the subset of C, denoted by W (T ), and is defined as

W (T ) = {⟨Tx , x⟩ : x ∈ H, ∥x∥ = 1}.

Example 2

Let T be the linear operator on C2 defined by the matrix

T =

(
0 1
0 0

)
. Then W (T ) = {z : |z| ≤ 1

2}.

0 (1
2 , 0)

W (T )
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Elementary properties

Proposition 3
For any bounded linear operator T , the numerical range W (T ) is a
bounded set.

If T acts on a finite-dimensional space, then W (T ) is
compact.

Proof.

By Cauchy-Schwarz inequality, |⟨Tx , x⟩| ≤ ∥T∥∥x∥2 ≤ ∥T∥.
⇒ W (T ) is bounded.

The unit sphere of a finite-dimensional space is a compact set and
the quadratic map x 7→ ⟨Tx , x⟩ is continuous.
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The following example shows that in infinite dimensional space W (T )
may not be compact.

Example 4
Let T be the unilateral shift (left) operator on ℓ2.

For x = (x1, x2, . . .) ∈ H with ∥x∥ = 1,

Tx = (x2, x3, . . .)

⟨Tx , x⟩ = x2x̄1 + x3x̄2 + x4x̄3 + · · · with |x1|2 + |x2|2 + · · · = 1.
Here W (T ) = {z : |z| < 1}, which is not compact.
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0 (1, 0)

W (T )
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Elementary properties

Proposition 5

If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:

(a) W (aT + bI) = aW (T ) + b,
(b) W (U∗TU) = W (T ) for any unitary operator U,
(c) W (T ∗) = {λ̄, λ ∈ W (T )}and
(d) W (T + S) ⊆ W (T ) + W (S).
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The most fundamental theorem in the study of numerical range was
proved by Toeplitz and Hausdorff more than 100 years ago.

Toeplitz
[18] proved that boundary of the numerical range is always a convex
curve and later on Hausdorff [12] proved that the numerical range is
convex.

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an
ellipse whose foci are the eigenvalues of T.

Proof.
As W (U∗TU) = W (T ) so by Schur’s decomposition theorem, T

can be assumed in the form , T =

(
λ1 a
0 λ2

)
.
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Proof.
If λ1 = λ2 = λ, then W(T- λI) is a circular disc with centre at 0 and
radius 1

2 |a|.

⇒ W (T ) is a circular disc with centre at λ and radius 1
2 |a|.

λ

|a|
2

W (T )
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Proof.

If λ1 ̸= λ2 and a = 0 thenT =

(
λ1 0
0 λ2

)
.

⇒ For any x = (f , g) with |f |2 + |g|2 = 1,
⟨Tx , x⟩ = λ1|f |2 + λ2|g|2 = tλ1 + (1 − t)λ2, where t = |f |2.

⇒ W(T) is the line segment joining λ1 and λ2.

λ1

λ2

W (T )
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Proof.
If λ1 ̸= λ2 and a ̸= 0, then we have

T − λ1 + λ2

2
I =

(λ1−λ2
2 a
0 λ2−λ1

2

)
=

(
reiθ a
0 −reiθ

)
,

where λ1−λ2
2 = reiθ, 0 ≤ θ ≤ 2π.

e−iθ
[
T − λ1+λ2

2 I
]
=

(
r b
0 −r

)
,where b = ae−iθ.

Consider A = e−iθ
[
T − λ1+λ2

2 I
]
.

Let z = (f , g) and |f |2 + |g|2 = 1, f = eiα cos θ,g = eiβ sin θ,
θ ∈ [0, π2 ], α, β ∈ [0, 2π].
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Proof.

Then ⟨Az, z⟩ = r(cos2 θ − sin2 θ) + bei(β−α) sin θ cos θ = x + iy ,
where x = r cos 2θ + |b|

2 sin 2θ cos(β − α+ γ), y =
|b|
2 sin 2θ sin(β − α+ γ), γ = arg b.

So (x − r cos 2θ)2 + y2 = |b|2
4 sin2 2θ.

This is a family of circles and we obtain their union.

Let 2θ = ϕ and so (x − r cosϕ)2 + y2 = |b|2
4 sin2 ϕ, 0 ≤ ϕ ≤ θ.

Differentiating with respect to ϕ, we get (x − r cosϕ)r = |b|2
4 cosϕ.

Eliminating ϕ between the last two equations, we get
x2

r2+(|b|2/4) +
y2

(|b|2/4) = 1.
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Proof.
Thus W(A) is an ellipse with center at origin and minor axis |b|,
major axis

√
4r2 + |b|2, foci at r and −r .

−r
O

r

|b|
2

√
4r2+|b|2

2

W (A)
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Proof.

Since A = e−iθ
[
T − λ1+λ2

2 I
]
, W (T ) = W (eiθA) + λ1+λ2

2 .

Now,

W (eiθA) is an ellipse with foci at eiθr ,−eiθr , i.e., at λ1−λ2
2 , λ2−λ1

2
and the major axis has an inclination of θ with the real axis.
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−λ

2

2

O

λ 2
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Proof.
Thus W (T ) is an ellipse with foci at λ1, λ2 and the major axis has
an inclination of θ with the real axis.

λ 1

λ 2

W (T )

θ

√
4r2+|b|2

2

|b|
2

November 1, 2025 15 / 81



Proof.
Thus W (T ) is an ellipse with foci at λ1, λ2 and the major axis has
an inclination of θ with the real axis.

λ 1

λ 2

W (T )

θ

√
4r2+|b|2

2

|b|
2
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Numerical range of some 2 × 2 matrices:

Example 7

(i) Let T be the linear operator on C2 defined by the matrix

T =

(
i 0
0 2 + 3i

)
.

Then W (T ) is the line segment joining i and 2 + 3i .

i

2 + 3i

W (T )
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Numerical range of some 2 × 2 matrices:

Example 8

(ii) Let T be the linear operator on C2 defined by the matrix

T =

(
1 + i 1

0 1 + i

)
.

Then W (T ) is the circular disc with center at 1 + i and radius 1
2 .

1 + i
1
2

W (T )
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Numerical range of some 2 × 2 matrices:

Example 9

(iii) Let T be the linear operator on C2 defined by the matrix

T =

(
1 1 + i
0 −1

)
.

Then W (T ) is the ellipse as shown in the following picture.

(−1, 0)
(0, 0)

(1, 0)

√
2

2

√
6

2

W (T )
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In case the dimension is greater than 2 then the numerical range is not
necessarily ellipse.

Example 10

Let T be the linear operator on C3 defined by the matrix

T =

2i 0 0
0 1 + i 0
0 0 −1 − i

 .

Then W (T ) is the convex hull of the points 2i , 1 + i and −1 − i .

1 + i

2i

−1 − i

W (T )
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Theorem 11
(Toeplitz-Hausdorff Theorem) The numerical range W (T ) of a
bounded linear operator T defined on a Hilbert space H is always
convex.

Proof.
Let ξ, η ∈ W (T ), where ξ = ⟨Tf , f ⟩, ∥f∥ = 1 , η = ⟨Tg,g⟩, ∥g∥ = 1.
For t = 0 or t = 1, (1 − t)ξ + tη ∈ W (T ).

Consider t ∈ (0, 1).

For each λ ∈ C, f+λg
∥f+λg∥ ∈ SH.

{(1 − t)ξ + tη} = ⟨T (f+λg)
∥f+λg∥ ,

(f+λg)
∥f+λg∥⟩.

⇒ |λ|2+ 1
(1−t)(ξ−η) [2{(1− t)ξ+ tη}Re(λ⟨f , g⟩)−2Re(λ⟨Tf , g⟩)]− t

1−t =

0.
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Proof.

⇒ | λ |2 +Cλ+ Dλ− t
1−t = 0, where C and D are complex constants

independent of λ.
Considering λ = x + iy , x2 + y2 + ax + by − t

1−t = 0 and
cx + dy = 0.

(
−a

2
,
−b

2
)

O

cx + dy = 0

x
2 +

y
2 +

ax
+

by
−

t
1−

t
=

0

θ

r 1

r 2
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Proof.
⇒ There exists two λ ∈ C such that

(1 − t)ξ + tη = ⟨Th,h⟩, where h =
f + λg
∥f + λg∥

.

⇒ The line segment joining ξ and η is in W (T ).

Proof.
Another proof.

Let ξ, η ∈ W (T ), where ξ = ⟨Tf , f ⟩, ∥f∥ = 1 , η = ⟨Tg,g⟩, ∥g∥ = 1.
Let V be the subspace spanned by f and g, and P be the
orthogonal projection of H on V so that Pf = f and Pg = g.
Consider PTP : V −→ V so that ⟨PTPf , f ⟩ = ⟨Tf , f ⟩ and
⟨PTPg, g⟩ = ⟨Tg, g⟩.
W (PTP) is an ellipse and W (PTP) contains the line segment
joining α and β, and W (PTP) is contained in W (T ).
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We next use numerical radius to study the numerical range of some
special class of operators.

Definition 12
The numerical radius w(T ) of an operator T on H is defined as
w(T ) = sup{|⟨Tx , x⟩| : x ∈ H, ∥x∥ = 1}.

W (T )

w(T )

November 1, 2025 23 / 81



We next use numerical radius to study the numerical range of some
special class of operators.

Definition 13
The numerical radius w(T ) of an operator T on H is defined as

w(T ) = sup{|⟨Tx , x⟩| : x ∈ H, ∥x∥ = 1}.

W (T )

w(T )

November 1, 2025 24 / 81



Numerical radius is the radius of the smallest circle centred at
origin containing the numerical range W (T ).
The spectral radius r(T ) of an operator is defined as

r(T ) = sup{|λ| : λ ∈ σ(T )}.

r(T ) ≤ w(T ) ≤ ∥T∥.
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Theorem 14
(i) T is selfadjoint iff W (T ) is real.
(ii) If T is selfadjoint then W (T ) = [m,M], where
m = inf{⟨Tx , x⟩ : ∥x∥ = 1} and M = sup{⟨Tx , x⟩ : ∥x∥ = 1}.
(iii) If T is selfadjoint then ∥T∥ = w(T ) = max{|m|, |M|}, where
m = inf{⟨Tx , x⟩ : ∥x∥ = 1} and M = sup{⟨Tx , x⟩ : ∥x∥ = 1}.

Proof.
(i)

If T is selfadjoint, then ∀x ∈ H, ⟨Tx , x⟩ = ⟨x ,Tx⟩ = ⟨Tx , x⟩. Hence
W (T ) is real.
if ⟨Tx , x⟩ is real for all x ∈ H, we have
⟨Tx , x⟩ − ⟨x ,Tx⟩ = 0 = ⟨(T − T ∗) x , x⟩ . Thus T − T ∗ = 0 or
T = T ∗.

(ii)
As the numerical range is a bounded subset of the reals so the
result follows trivially.
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Proof.
(iii)

w(T ) = sup{|m|, |M|}.
For any real λ ̸= 0, 4∥Tx∥2 =〈
T
(
λx + λ−1Tx

)
, λx + λ−1Tx

〉
−
〈
T
(
λx − λ−1Tx

)
, λx − λ−1Tx

〉
4∥Tx∥2 ≤ w(T )

[∥∥λx + λ−1Tx
∥∥2

+
∥∥λx − λ−1Tx

∥∥2
]
=

2w(T )
(
λ2∥x∥2 + λ−2∥Tx∥2) .

If x ̸= 0, then taking λ2 = ∥Tx∥
∥x∥ we get ∥Tx∥ ≤ w(T )∥x∥.

Thus for all x ∈ H, we get ∥Tx∥ ≤ w(T )∥x∥.
∥T∥ ≤ w(T )

∥T∥ = w(T ) = max{|m|, |M|}.
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Theorem 15

If w(T ) = ∥T∥, then r(T ) = ∥T∥.

Proof.
Let w(T ) = ∥T∥ = 1.
Then there is a sequence of unit vectors {xn} such that
⟨Txn, xn⟩ → λ ∈ W (T ), |λ| = 1.
From|⟨Txn, xn⟩| ≤ ∥Txn∥ ≤ 1, we have ∥Txn∥ → 1.
∥(T − λI)xn∥2 = ∥Txn∥2 − ⟨Txn, λxn⟩ − ⟨λxn,Txn⟩+ ∥xn∥2 → 0.
λ ∈ σapp(T ) and r(T ) = 1.
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Theorem 16
If W (T ) is a line segment then T is normal.

Proof.
Let T be a bounded linear operator such that W (T ) is a line
segment.
Suppose that λ is a point on the line segment with inclination θ.
Then W (e−iθ(T − λI)) is contained in the real axis.
Thus e−iθ(T − λI) is selfadjoint and so
[e−iθ(T − λI)]∗ = e−iθ(T − λI).
T ∗ = λI + e−2iθ(T − λI).
TT ∗ = λT + e−2iθT (T − λI) = T ∗T .

T is normal.
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The class of normal operators have some nice properties related to
numerical range and numerical radius.

Theorem 17

Let T be a normal operator. Then
(i) w(T ) = ∥T∥.

(ii) w(T ) = r(T ).

(iii) W (T ) = co(σ(T )).
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Theorem 18
In finite dimensional space, the numerical range of a normal operator
is a polygon.

Proof.
Let T be normal operator acts on a finite dimensional space H.
Thus W (T ) is closed.
It follows from Theorem17 (iii) that W (T ) = co(σ(T )).

As H is finite dimensional, σ(T ) contains atmost finitely many
elements.
So W (T ) is a polygon.
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Remark 1
(i) If T is unitary then W (T ) is a polygon inscribed in the unit circle.
(ii) There exist operator T which is not normal but W (T ) is a polygon.

Example 19

Consider T =

(
A 0
0 B

)
, where A =

(
0 0
0 1

)
and

B =

 i 0 0
0 3

2 − i 0
0 0 −3

2 − i

 .

Then W (T ) = co(W (A) ∪ W (B)) = co{i , 3
2 − i ,−3

2 − i}.
This is a polygon but T is not normal.
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i

3
2 − i−3

2 − i

W (T )
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Numerical radius inequalities

Inequality 20
(Classical Numerical radius inequalities)

Let T ∈ B(H), then

1
2
∥T∥ ≤ w(T ) ≤ ∥T∥ . (1)

Moreover, if T is normal, then w(T ) = ∥T∥ = r(T ). If T 2 = 0, then
w(T ) = 1

2∥T∥.
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Inequalities using Cartesian decomposition of operator

First, we recall the following.

Definition 21
A function f : I → R defined on an interval I ⊆ R is said to be convex
if, for all x1, x2 ∈ I and for all λ ∈ [0,1], the following inequality holds:

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2).

In [14], Kittaneh gives a refined upper and lower bound of (1) using
Cartesian decomposition and the convexity of functions.

Inequality 22
(A refinement of Classical Numerical radius inequalities)
If T ∈ B(H), then

1
4
∥T ∗T + TT ∗∥ ≤ w2(T ) ≤ 1

2
∥T ∗T + TT ∗∥ . (2)
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Inequalities using Cartesian decomposition of operator

Proof.
Suppose that T = B + iC is the Cartesian decomposition of the
operator A.
Let x ∈ H be arbitrary.
It follows from the convexity of the function f (t) = t2 that

|⟨Tx , x⟩|2 = ⟨Bx , x⟩2 + ⟨Cx , x⟩2 ≥ 1
2
(|⟨Bx , x⟩|+ |⟨Cx , x⟩|)2

≥ 1
2
|⟨(B ± C)x , x⟩|2.
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Inequalities using Cartesian decomposition of operator

Proof.
So

w2(T ) = sup
{
|⟨Tx , x⟩|2 : x ∈ H, ∥x∥ = 1

}
≥ 1

2
sup

{
|⟨(B ± C)x , x⟩|2 : x ∈ H, ∥x∥ = 1

}
=

1
2

w(B ± C)2 =
1
2
∥B ± C∥2 =

1
2

∥∥∥(B ± C)2
∥∥∥

Hence

2w2(T ) ≥ 1
2

∥∥∥(B + C)2
∥∥∥+ 1

2

∥∥∥(B − C)2
∥∥∥

≥ 1
2

∥∥∥(B + C)2 + (B − C)2
∥∥∥

=
∥∥∥B2 + C2

∥∥∥ =
1
2
∥T ∗T + TT ∗∥ .

whence
w2(T ) ≥ 1

4
∥T ∗T + TT ∗∥ ,

which proves the first inequality in (2).
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Inequalities using Cartesian decomposition of operator

Proof.
For every unit vector x ∈ H, it follows from the Cauchy-Schwarz
inequality that

|⟨Tx , x⟩|2 = ⟨Bx , x⟩2 + ⟨Cx , x⟩2 ≤ ∥Bx∥2 + ∥Cx∥2

=
〈

B2x , x
〉
+
〈

C2x , x
〉

=
〈(

B2 + C2
)

x , x
〉
.

Therefore,

w2(A) = sup
{
|⟨Tx , x⟩|2 : x ∈ H, ∥x∥ = 1

}
≤ sup

{〈(
B2 + C2

)
x , x

〉
: x ∈ H, ∥x∥ = 1

}
=
∥∥∥B2 + C2

∥∥∥ =
1
2
∥T ∗T + TT ∗∥

which yields the second inequality in (2). November 1, 2025 38 / 81



Inequalities using Cartesian decomposition of operator

Now, we present the following nontrivial improvement of the first
inequality in (1), that is, 1

2∥T∥ ≤ w(T ) and the second inequality in (2).
Note an elementary identity that max{a,b} = 1

2 (a + b + |a − b|) for
a, b ∈ R.

Inequality 23
Let T ∈ B(H), then

w(T ) ≥ ∥T∥
2

+

∣∣ ∥Re(T )∥ − ∥Im(T )∥
∣∣

2
. (3)

Proof.
Let x ∈ H with ∥x∥ = 1.
Then from the Cartesian decomposition of T we have,
|⟨Tx , x⟩|2 = |⟨Re(T )x , x⟩|2 + |⟨Im(T )x , x⟩|2.
This implies w(T ) ≥ ∥Re(T )∥ and w(T ) ≥ ∥Im(T )∥.
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Inequalities using Cartesian decomposition of operator

Proof.
Thus,

w(T ) ≥ max{∥Re(T )∥, ∥Im(T )∥}

=
∥Re(T )∥+ ∥Im(T )∥

2
+

∣∣ ∥Re(T )∥ − ∥Im(T )∥
∣∣

2

≥ ∥Re(T ) + iIm(T )∥
2

+

∣∣ ∥Re(T )∥ − ∥Im(T )∥
∣∣

2

=
∥T∥

2
+

∣∣ ∥Re(T )∥ − ∥Im(T )∥
∣∣

2
.
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Inequalities using Cartesian decomposition of operator

Corollary 24

Let T ∈ B(H). If w(T ) = ∥T∥
2 , then ∥Re(T )∥ = ∥Im(T )∥ = ∥T∥

2 .

Proof.
From Inequality (3), we have
w(T ) ≥ ∥T∥

2 + | ∥Re(T )∥−∥Im(T )∥ |
2 ≥ ∥T∥

2 .

This implies that if w(T ) = ∥T∥
2 , then ∥Re(T )∥ = ∥Im(T )∥.

Also ∥Re(T )∥ ≤ w(T ) = ∥T∥
2 = ∥Re(T )+iIm(T )∥

2 ≤ ∥Re(T )∥+∥Im(T )∥
2 =

∥Re(T )∥
So ∥Re(T )∥ = ∥Im(T )∥ = ∥T∥

2 .
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Inequalities using Cartesian decomposition of operator

We next derive an improvement of the first inequality in (2).

Theorem 25
Let T ∈ B(H), then

w2(T ) ≥ 1
4
∥T ∗T + TT ∗∥+ 1

2

∣∣∣ ∥Re(T )∥2 − ∥Im(T )∥2
∣∣∣ . (4)

Proof.
Let x ∈ H with ∥x∥ = 1.
Then from the Cartesian decomposition of A we get,
|⟨Tx , x⟩|2 = |⟨Re(T )x , x⟩|2 + |⟨Im(T )x , x⟩|2.
This implies w(T ) ≥ ∥Re(T )∥ and w(T ) ≥ ∥Im(T )∥.
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Inequalities using Cartesian decomposition of operator

Proof.
So

w2(T ) ≥ max
{
∥Re(T )∥2, ∥Im(T )∥2

}
=

∥Re(T )∥2 + ∥Im(T )∥2

2
+

∣∣∥Re(T )∥2 − ∥Im(T )∥2
∣∣

2

=
∥(Re(T ))2∥+ ∥(Im(T ))2∥

2
+

∣∣∥Re(T )∥2 − ∥Im(T )∥2
∣∣

2

≥ ∥(Re(T ))2 + (Im(T ))2∥
2

+

∣∣∥Re(T )∥2 − ∥Im(T )∥2
∣∣

2

=
1
4
∥T ∗T + TT ∗∥+

∣∣∥Re(T )∥2 − ∥Im(T )∥2
∣∣

2
.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

For any x , y ∈ H, the Cauchy-Schwarz inequality asserts that

|⟨x , y⟩| ≤ ∥x∥∥y∥.

This classical result was later refined in an elegant form by Buzano [8],
as stated below.

Inequality 26
Let x , y ,e ∈ H with ∥e∥ = 1. Then

|⟨x ,e⟩ ⟨e, y⟩| ≤ 1
2
(∥x∥ ∥y∥+ |⟨x , y⟩|) . (5)

Abu-Omar and Kittaneh in [1] proved the following inequality

w2(T ) ≤ 1
2

w(T 2) +
1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥ . (6)
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as stated below.

Inequality 26
Let x , y ,e ∈ H with ∥e∥ = 1. Then

|⟨x ,e⟩ ⟨e, y⟩| ≤ 1
2
(∥x∥ ∥y∥+ |⟨x , y⟩|) . (5)

Abu-Omar and Kittaneh in [1] proved the following inequality

w2(T ) ≤ 1
2

w(T 2) +
1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥ . (6)
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

By using Buzano’s inequality we extend the above inequality. First we
need the following inequality.

Inequality 27
(Hölder–McCarthy inequality)
Let T ∈ B(H) be positive and let x ∈ H with ∥x∥ = 1. Then

⟨Tx , x⟩r ≤ ⟨T r x , x⟩, r ≥ 1. (7)

The inequality is reversed when 0 ≤ r ≤ 1.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 28
Let T ∈ B(H) and let x ∈ H with ∥x∥ = 1. Then

|⟨Tx , x⟩|2r ≤ 1
2
|⟨T 2x , x⟩|r + 1

4

〈
(|T |2r + |T ∗|2r )x , x

〉
(8)

for all r ≥ 1.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Proof.
By considering a = Tx , b = T ∗x and e = x in (5), we get
|⟨Tx , x⟩|2 ≤ 1

2

(
|⟨T 2x , x⟩|+ ∥Tx∥ ∥T ∗x∥

)
.

From the convexity of the real function f (t) = t r (r ≥ 1), we derive
that

|⟨Tx , x⟩|2r

≤ 1
2

(
|⟨T 2x , x⟩|r + ∥Tx∥r ∥T ∗x∥r

)

November 1, 2025 47 / 81



Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Proof.
Then

|⟨Tx , x⟩|2r

≤ 1
2

(
|⟨T 2x , x⟩|r + 1

2
(∥Tx∥2r + ∥T ∗x∥2r )

)
=

1
2

(
|⟨T 2x , x⟩|r + 1

2
(⟨|T |2x , x⟩r + ⟨|T ∗|2x , x⟩r )

)
≤ 1

2

(
|⟨T 2x , x⟩|r + 1

2
(⟨|T |2r x , x⟩+ ⟨|T ∗|2r x , x⟩)

)
(by(7))

=
1
2
|⟨T 2x , x⟩|r + 1

4

〈
(|T |2r + |T ∗|2r )x , x

〉
.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 29
Suppose that T ∈ B(H). Then

w2r (T ) ≤ α

2
w r (T 2) +

∥∥∥∥α4 |T |2r +

(
1 − 3

4
α

)
|T ∗|2r

∥∥∥∥ (9)

for all r ≥ 1 and for all α ∈ [0, 1].

Proof.
Let x ∈ H be a unit vector.
It follows from the Cauchy–Schwarz inequality that
|⟨Tx , x⟩| = α|⟨Tx , x⟩|+(1−α)|⟨Tx , x⟩| ≤ α|⟨Tx , x⟩|+(1−α)∥T ∗x∥.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Proof.

From the convexity of f (t) = t2r (r ≥ 1), we infer that

|⟨Tx , x⟩|2r

≤ α|⟨Tx , x⟩|2r + (1 − α)∥T ∗x∥2r

≤ α|⟨Tx , x⟩|2r + (1 − α)⟨|T ∗|2r x , x⟩ (by (7))

≤ α

2
|⟨T 2x , x⟩|r + α

4

〈
(|T |2r + |T ∗|2r )x , x

〉
+ (1 − α)⟨|T ∗|2r x , x⟩

(by 8)

=
α

2
|⟨T 2x , x⟩|r +

〈{α
4

(
|T |2r + |T ∗|2r

)
+ (1 − α)|T ∗|2r

}
x , x

〉
=

α

2
|⟨T 2x , x⟩|r +

〈{
α

4
|T |2r +

(
1 − 3

4
α

)
|T ∗|2r

}
x , x

〉
≤ α

2
w r (T 2) +

∥∥∥∥α4 |T |2r +

(
1 − 3

4
α

)
|T ∗|2r

∥∥∥∥ .
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Proof.
Taking the supremum over all unit vectors x ∈ H we obtain
inequality (9).

Remark 2
It is remarkable that with

T =

 0 1 0
0 0 2
0 0 0


we observe that the inequality 9 for r = 1 generalize and improve
inequality (6).
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 30
(Mixed Cauchy-Schwarz inequality)
Let T ∈ B(H). Then

|⟨Tx , x⟩| ≤ ⟨|T |x , x⟩1/2 ⟨|T ∗|x , x⟩1/2.

for all x ∈ H,

Kato [13] generalized the mixed Cauchy-Schwarz inequality to a
bounded linear operator T ∈ B(H). He proved that

|⟨Tx , y⟩|2 ≤
〈
|T |2α x , x

〉〈
|T ∗|2(1−α) y , y

〉
(10)

for all x , y ∈ H and all α ∈ [0, 1].
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Next, Kittaneh gives an extension of Kato’s generalized mixed
Cauchy-Schwarz inequality. It states as follows.

Inequality 31
[16, Th. 1] Let T ∈ B(H) and let x , y ∈ H. If f and g are two
non-negative continuous functions on [0,∞) satisfying
f (t)g(t) = t , t ≥ 0, then

|⟨Tx , y⟩|2 ≤
〈

f 2(|T |)x , x
〉〈

g2(|T ∗|)y , y
〉
. (11)
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

By using mixed Cauchy-Schwarz inequality, we obtain the following
refined numerical radius inequality of (2).

Inequality 32
For an operator T ∈ B(H), it holds that

w2(T ) ≤ 1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

2
w (|T ||T ∗|) . (12)

Proof.
Let x ∈ H be a unit vector.
It follows from the inequality (10) that
|⟨Tx , x⟩|2 ≤ ⟨|T |x , x⟩⟨|T ∗|x , x⟩.
An application of the Buzano inequality gives that

⟨|T ∗|x , x⟩⟨x , |T |x⟩ ≤ 1
2
∥|T |x∥ ∥|T ∗|x∥+ 1

2
|⟨|T ∗|x , |T |x⟩| .
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Proof.
Hence

|⟨Tx , x⟩|2

≤ 1
4

(
∥|T |x∥2 + ∥|T ∗|x∥2

)
+

1
2
|⟨|T ||T ∗|x , x⟩|

=
1
4

(〈
|T |2x , x

〉
+
〈
|T ∗|2x , x

〉)
+

1
2
|⟨|T ||T ∗|x , x⟩|

=
1
4

〈(
|T |2 + |T ∗|2

)
x , x

〉
+

1
2
|⟨|T ||T ∗|x , x⟩|

≤ 1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

2
w (|T ||T ∗|) .

Taking the supremum over ∥x∥ = 1 we obtain that

w2(T ) ≤ 1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

2
w (|T ||T ∗|) .
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Remark 3
The inequality in (12) refines the second inequality in (2). As
w (|T ||T ∗|) ≤ ∥|T ||T ∗|∥ =

∥∥T 2
∥∥, so

1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

2
w (|T ||T ∗|)

≤ 1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

2

∥∥∥T 2
∥∥∥

≤ 1
4

∥∥∥|T |2 + |T ∗|2
∥∥∥+ 1

4

∥∥∥|T |2 + |T ∗|2
∥∥∥

=
1
2

∥∥∥|T |2 + |T ∗|2
∥∥∥ .
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Next, we present another refined numerical radius inequality by using
generalized Cauchy-Schwarz inequality and convexity of a function
f (t) = t2r .

Inequality 33
Let T ∈ B(H). Then

w2r (T ) ≤
∥∥∥α|T |2r + (1 − α) |T ∗|2r

∥∥∥
for all r ≥ 1 and 0 ≤ α ≤ 1. In particular,

w2(T ) ≤ min
0≤α≤1

∥∥∥α|T |2 + (1 − α) |T ∗|2
∥∥∥ . (13)
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Remark 4
(13) generalizes the second inequality in (2) to the form

w2(T ) ≤ ∥αT ∗T + (1 − α)TT ∗∥ , α ∈ [0, 1].

However, the first inequality cannot be generalized to the form

1
2
∥αT ∗T + (1 − α)TT ∗∥ ≤ w2(T ), α ∈ [0,1]

Consider T =

(
0 1
0 0

)
,

Then 3
8 = 1

2 ∥αT ∗T + (1 − α)TT ∗∥ ̸≤ w2(T ) = 1
4 for α = 1

4 .
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Inequalities using Bernau and Smithies inequality

Inequality 34
(Bernau and Smithies inequality)
Let T ∈ B(H). Then

∥Tx∥2 + |⟨T 2x , x⟩| ≤ 2w(T )∥Tx∥∥x∥,

for all x ∈ H.

Proof.
Let λ and θ be real numbers, λ ̸= 0.
Then we have

∥Tx∥2 + e2iθ⟨T 2x , x⟩ = 1
2
(λe2iθT 2x + λ−1eiθTx , λeiθTx + λ−1x)

− 1
2
(λe2iθT 2x − λ−1eiθTx , λeiθTx − λ−1x).
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Inequalities using Bernau and Smithies inequality

Proof.

Since |⟨Ty , y⟩| ≤ w(T )∥y∥2 for all y , it follows that

|∥Tx∥2 + e2iθ⟨T 2x , x⟩|

≤ 1
2

w(T )(∥λeiθTx + λ−1x∥2 + ∥λeiθTx − λ−1x∥2)

= w(T )(λ2∥Tx∥2 + λ−2∥x∥2).

If Tx ̸= 0, we choose θ so that e2iθ(T 2x , x) = |(T 2x , x)|, and λ so
that λ2∥Tx∥ = ∥x∥.
Therefore, ∥Tx∥2 + |⟨T 2x , x⟩| ≤ 2w(T )∥Tx∥∥x∥.
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Inequalities using Bernau and Smithies inequality

Inequality 35
(A generalization Bernau and Smithies inequality)
Let A,T ,B ∈ B(H). Then

|⟨A∗TBx , x⟩|+ |⟨B∗TAx , x⟩| ≤ 2w(T )∥Ax∥∥Bx∥,

for all x ∈ H.

Proof.
Suppose that x ∈ H and θ, ϕ are real numbers such that

eiϕ⟨B∗TAx , x⟩ = |⟨B∗TAx , x⟩|,

e2iθ⟨e−iϕA∗TBx , x⟩ = |⟨e−iϕA∗TBx , x⟩| = |⟨A∗TBx , x⟩|.

Consider a nonzero real number λ.
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Inequalities using Bernau and Smithies inequality

Proof.
Then

2e2iθ
〈

TBx ,eiϕAx
〉
+ 2eiϕ⟨TAx ,Bx⟩

=
〈〈

eiθT
(
λeiθBx +

1
λ

eiϕAx
)
, λeiθBx +

1
λ

eiϕAx
〉

−
〈

eiθT
(
λeiθBx − 1

λ
eiϕAx

)
, λeiθBx − 1

λ
eiϕAx

〉
.

Hence,

2e2iθ
〈

e−iϕA∗TBx , x
〉
+ 2eiϕ ⟨B∗TAx , x⟩

=

〈
eiθT

(
λeiθBx +

1
λ

eiϕAx
)
, λeiθBx +

1
λ

eiϕAx
〉

−
〈

eiθT
(
λeiθBx − 1

λ
eiϕAx

)
, λeiθBx − 1

λ
eiϕAx

〉
.
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Inequalities using Bernau and Smithies inequality

Proof.
So,

2 |⟨A∗TBx , x⟩|+ 2 |⟨B∗TAx , x⟩|

=
〈

eiθT
(
λeiθBx +

1
λ

eiϕAx
)
, λeiθBx +

1
λ

eiϕAx
〉

−
〈

eiθT
(
λeiθBx − 1

λ
eiϕAx

)
, λeiθBx − 1

λ
eiϕAx

〉
Therefore,

2 |⟨A∗TBx , x⟩|+ 2 |⟨B∗TAx , x⟩|

≤|
〈

eiθT
(
λeiθBx +

1
λ

eiϕAx
)
, λeiθBx +

1
λ

eiϕAx
〉

|

+

∣∣∣∣〈eiθT
(
λeiθBx − 1

λ
eiϕAx

)
, λeiθBx − 1

λ
eiϕAx

〉∣∣∣∣ .
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Inequalities using Bernau and Smithies inequality

Proof.
Hence,

2 |⟨A∗TBx , x⟩|+ 2 |⟨B∗TAx , x⟩|

≤ w(T )

(∥∥∥∥λeiθBx +
1
λ

eiϕAx
∥∥∥∥2

+

∥∥∥∥λeiθBx − 1
λ

eiϕAx
∥∥∥∥2
)
.

Thus,

|⟨A∗TBx , x⟩|+ |⟨B∗TAx , x⟩| ≤ w(T )

(
λ2∥Bx∥2 +

1
λ2 ∥Ax∥2

)
.

If ∥Bx∥ ̸= 0, then we can choose λ2 = ∥Ax∥
∥Bx∥ to get

|⟨A∗TBx , x⟩|+ |⟨B∗TAx , x⟩| ≤ 2w(T )∥Ax∥∥Bx∥.

Clearly, this inequality is valid when ∥Bx∥ = 0.
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Inequalities using Bernau and Smithies inequality

Remark 5
Considering A = T and B = I in the above inequality, we get the
Bernau and Smithies inequality

∥Tx∥2 +
∣∣∣〈T 2x , x

〉∣∣∣ ≤ 2w(T )∥Tx∥∥x∥, x ∈ H.

By using this generalization we get the following numerical radius
inequalities for product of three operators.

Theorem 36
Let A,T ,B ∈ B(H). Then

(i) c(A∗TB) + w(B∗TA) ≤ 2w(T )∥A∥∥B∥.
(ii) w(A∗TB) + c(B∗TA) ≤ 2w(T )∥A∥∥B∥.
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Generalized Numerical Ranges

In this section, we focus on the numerical range of operators
acting on a Hilbert space (H, ⟨·, ·⟩) equipped with an additional
semi-inner product determined by a positive operator A.
Specifically, this semi-inner product is defined by ⟨x , y⟩ = ⟨Ax , y⟩
for all x , y in the concerned space.
BA1/2(H) = {T ∈ B(H) : ∃ c > 0 such that ∥Tx∥A ≤ c∥x∥A ∀x ∈
H}.

November 1, 2025 66 / 81



Definition 37
(A-Numerical Range) Let T ∈ BA1/2(H). The A-numerical range of T ,
denoted by WA(T ), is defined as the collection of complex scalars
⟨Tx , x⟩A for x ∈ H with ∥x∥A = 1, i.e.,
WA(T ) = {⟨Tx , x⟩A : x ∈ H, ∥x∥A = 1}.

Let T ∈ BA1/2(H). Then WA(T ) is a convex subset of C.

November 1, 2025 67 / 81



Definition 38
(A-eigenvalue) Let T ∈ BA1/2(H). Then λ ∈ C is said to be an
A-eigenvalue of T if there exists λ ∈ C such that ATx = λAx}.

Definition 39
(A-reducing eigenvalue) A complex number λ ∈ C is said to be an
A-reducing eigenvalue of T ∈ BA(H) if ATx = λAx and AT ♯Ax = λ̄Ax ,
for some nonzero x ∈ R(A).
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Then we have the following results.
Let λ be in the boundary of WA(T ). If λ is an A-eigenvalue of T
then it is an A-reducing eigenvalue of T .

Let T ∈ BA(H). If λ, µ are distinct A-eigenvalues of T with λ in the
boundary of WA(T ) then A-eigenvectors associated with λ and µ
are A-orthogonal to each other.
Let T ∈ BA(H) be an A-selfadjoint operator. If λ ∈ WA(T ) and
T ≤A λI then λ is an A-reducing eigenvalue of T .

Every corner point of WA(T ) is an A-reducing eigenvalue of T .
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Generalized Numerical Ranges

Definition 40
(Joint numerical range) For an n-tuple T = (T1, · · · ,Tn) ∈ B(H)n, the
joint numerical range of T is defined as

W (T ) = W (T1, · · · ,Tn) = {(⟨T1x , x⟩, · · · , ⟨Tnx , x⟩) : x ∈ H, ∥x∥ = 1} .

The joint numerical range does not always satisfy the convexity
property.

Consider T1 =

(
0 1
1 0

)
, T2 =

(
0 i
i 0

)
and T3 =

(
1 0
0 1

)
.

W (T1,T2,T3) is not convex.
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Next we state some basic convexity properties of the joint numerical
range.

Proposition 41
Let T = (T1, · · · ,Tn) be an n-tuple of operators on H.

(i) W (T ) is convex if and only if W (T , I) is convex.
(ii) If W (T ) is convex and S1,S2, · · · ,Sm are in span{T1, · · · ,Tn},

then W (S1,S2, · · · ,Sm) is convex.
(iii) Let {S1,S2, · · · ,Sm} be a basis of span{T1, · · · ,Tn}. Then W (T )

is convex if and only if W (S1,S2, · · · ,Sm) is convex.
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Generalized Numerical Ranges

Definition 42
(C-numerical range) For n × n matrices T and C, the C-numerical
range is defined as

WC(T ) = {tr(CU∗TU) : U is an n × n unitary matrix}.

Two subclasses of the C-numerical ranges are c-numerical range and
k -numerical range.

For any vector c = (c1, c2, · · · , cn) ∈ Cn, the c-numerical range of
T is defined as
Wc(T ) ={

n∑
i=1

ci⟨Txi , xi⟩ : {x1, x2, · · · , xn} orthonormal basis of Cn
}
.

For any k , 1 ≤ k ≤ n, the k -numerical range is defined as
Wk (T ) ={

1
k

n∑
i=1

⟨Txi , xi⟩ : {x1, x2, · · · , xn} orthonormal subset of Cn
}
.
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Remark 6
Wc(T ) is WC(T ) for C = diag(c1, c2, · · · , cn), Wk (T ) is Wc(T ) with
c = (1/k , · · · ,1/k , 0, · · · ,0) in Cn, and Wk (T ) with k = 1 is the
classical numerical range W (T ) of T .

The C-numerical range of an operator is not always convex.
For example, consider T = C = diag(0, 1, i), then WC(T ) is not
convex.
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Generalized Numerical Ranges

Although the previous example showed non-convexity, the C-numerical
range can still be convex for some following particular cases.

(i) If T and C are 2 × 2 matrices then WC(T ) is a elliptic disc and
hence is convex.

(ii) If T and C are n × n matrices and C is Hermitian then WC(T ) is
convex.
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Generalized Numerical Ranges

Definition 43
(q-numerical range) For a bounded linear operator T on H and a
complex number q with |q| ≤ 1, the q-numerical range of T , denoted
by Wq(T ), is defined as

Wq(T ) = {⟨Tx , y⟩ : x , y ∈ H, ∥x∥ = 1, ∥y∥ = 1, ⟨x , y⟩ = q}.

If q = 1 then Wq(T ) reduces to the classical numerical range
W (T ).

For |q| ≤ 1, Wq(T ) is convex.
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Problem 1

Let T be a bounded linear operator on H.

It is well-known that w(T ) ≥ 1
2∥T ∗T + TT ∗∥

1
2 ≥ ∥T∥

2 .

A well-known characterization of the numerical range states that
w(T ) = ∥T∥

2 if and only if W (T ) is a circular disk with center at the
origin and radius ∥T∥

2 .

In [2], we proved that W (T ) is contained in a closed circular disk
and contains a semi-circular disk with center at the origin and
radius 1

2∥T ∗T + TT ∗∥
1
2 if and only if the numerical radius attains

its lower bound 1
2∥T ∗T + TT ∗∥

1
2 .
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Problem 1

Open Question 1

(1) Does the equality w(T ) = 1
2∥T ∗T + TT ∗∥

1
2 imply that W (T ) is a

closed circular disk? If not, then provide an example.
(2) Does there exist a lower bound, say, l(T ), for the numerical radius

w(T ) which satisfies w(T ) ≥ l(T ) ≥ 1
2∥T ∗T + TT ∗∥

1
2 and the

closure of the numerical range is a circular disk with center at
origin when w(T ) = l(T ) ≥ 1

2∥T ∗T + TT ∗∥
1
2 ?
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Problem 2

Let T ∈ Mn(C). Then the numerical radius w(T ) satisfies
w(T ) ≤ ∥T∥.
In [3], we established a generalization and improvement of the
above inequality, namely,

w(T ) ≤ ∥αT ∗T + (1 − α)TT ∗∥
1
2 ,

for all α ∈ [0, 1].
It is easy to observe that if T is a normal matrix then
w(T ) = ∥αT ∗T + (1 − α)TT ∗∥

1
2 , for all α ∈ [0, 1].

Open Question 2
It leads us to the question whether the above equality holds for
non-normal matrices, for all α ∈ [0, 1].
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Problem 2

For a normal matrix T , whose w(T ) = ∥αT ∗T + (1 − α)TT ∗∥
1
2 for

all α ∈ [0, 1], the boundary of the numerical range ∂W (T ) is not
smooth.
Also, there exists a non-normal matrix T for which
W (T ) = ∥αT ∗T + (1 − α)TT ∗∥

1
2 for all α ∈ [0, 1], and the

boundary of W (T ) is not smooth.

For example, consider T =

0 2 0
0 0 0
0 0 2

 , then W (T ) is a convex

hull of {z ∈ C : |z| ≤ 1} ∪ {2}, which is not smooth.
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Problem 2

In this context, the following two questions arise:

Open Question 3

(1) If w(T ) = ∥αT ∗T + (1 − α)TT ∗∥
1
2 , for all α ∈ [0, 1], then prove or

disprove that the boundary of the numerical range ∂W (T ) is not
smooth.

(2) If w(T ) = ∥αT ∗T + (1 − α)TT ∗∥
1
2 , for some α ∈ [0, 1], then prove

or disprove that the boundary of the numerical range ∂W (T ) is not
smooth.
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