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Definition 1

(Numerical range) Let T be a bounded linear operator on the complex
Hilbert space H with inner product (-, -). The numerical range of an
operator T is the subset of C, denoted by W(T), and is defined as

W(T)={(Tx,x) : x € H,||x]| =1}.
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Definition 1
(Numerical range) Let T be a bounded linear operator on the complex
Hilbert space H with inner product (-, -). The numerical range of an
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Definition 1
(Numerical range) Let T be a bounded linear operator on the complex
Hilbert space H with inner product (-, -). The numerical range of an
operator T is the subset of C, denoted by W(T), and is defined as

W(T)={(Tx,x) : x € H,||x]| =1}.

@ Let T be the linear operator on C? defined by the matrix

T— (8 8) _Then W(T) = {z:|z| < 1}.
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Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set.

November 1, 2025 4/81



Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set. If T acts on a finite-dimensional space, then W(T) is
compact.

November 1, 2025 4/81



Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set. If T acts on a finite-dimensional space, then W(T) is
compact.

@ By Cauchy-Schwarz inequality, |{Tx, x)| < || T||[|x||> < || T]|-

November 1, 2025 4/81



Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set. If T acts on a finite-dimensional space, then W(T) is
compact.

@ By Cauchy-Schwarz inequality, |{Tx, x)| < || T||[|x||> < || T]|-
= W(T) is bounded.

November 1, 2025 4/81



Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set. If T acts on a finite-dimensional space, then W(T) is
compact.

@ By Cauchy-Schwarz inequality, |(Tx, x)| < || T||[|x[|® < || T]|.
= W(T) is bounded.
@ The unit sphere of a finite-dimensional space is a compact set
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Elementary properties

Proposition 3

For any bounded linear operator T, the numerical range W(T) is a
bounded set. If T acts on a finite-dimensional space, then W(T) is
compact.

@ By Cauchy-Schwarz inequality, |{Tx, x)| < || T||[|x||> < || T]|-
= W(T) is bounded.

@ The unit sphere of a finite-dimensional space is a compact set and
the quadratic map x — (Tx, x) is continuous.

Ol
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The following example shows that in infinite dimensional space W(T)
may not be compact.
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The following example shows that in infinite dimensional space W(T)
may not be compact.

Example 4
@ Let T be the unilateral shift (left) operator on /5.

November 1, 2025 5/81



The following example shows that in infinite dimensional space W(T)
may not be compact.
Example 4
@ Let T be the unilateral shift (left) operator on /5.
@ For x = (X1, Xg,...) € H with || x]| = 1,

Tx = (X2, X3, ...)

November 1, 2025 5/81



The following example shows that in infinite dimensional space W(T)
may not be compact.
Example 4
@ Let T be the unilateral shift (left) operator on /5.
@ For x = (X1, Xg,...) € H with || x]| = 1,

Tx = (X2, X3, ...)

o <TX,X> = XoXy + X3Xo + X4X3 + - - - with ’X1|2+|X2|2+~-- =1.
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The following example shows that in infinite dimensional space W(T)
may not be compact.
Example 4
@ Let T be the unilateral shift (left) operator on /5.
@ For x = (X1, Xg,...) € H with || x]| = 1,

Tx = (X2, X3, ...)

o <TX,X> = XoXy + X3Xo + X4X3 + - - - with ’X1|2+|X2|2+~-- =1.
@ Here W(T) = {z:|z| < 1}, which is not compact.
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Elementary properties

Proposition 5

If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:
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Elementary properties

Proposition 5

If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:

(a) W(aT + bl) = aW(T) + b,
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Elementary properties

Proposition 5

If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:

(a) W(aT + bl)=aW(T)+ b,
(b) W (U*TU) = W(T) for any unitary operator U,
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If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:

(a) W(aT + bl) = aW(T) + b,
(b) W (U*TU) = W(T) for any unitary operator U,
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Elementary properties

Proposition 5

If S and T are bounded linear operators on H, and a and b are
scalars, then the followings hold:

(a) W(aT + bl)=aW(T)+ b,

(b) W (U*TU) = W(T) for any unitary operator U,
() W(T*) ={\\e W(T)}land

(d) W(T +S) < W(T)+ W(S).
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The most fundamental theorem in the study of numerical range was
proved by Toeplitz and Hausdorff more than 100 years ago.
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The most fundamental theorem in the study of numerical range was
proved by Toeplitz and Hausdorff more than 100 years ago. Toeplitz

[18] proved that boundary of the numerical range is always a convex
curve
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The most fundamental theorem in the study of numerical range was
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[18] proved that boundary of the numerical range is always a convex
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convex.

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an
ellipse whose foci are the eigenvalues of T.
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The most fundamental theorem in the study of numerical range was
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convex.

Theorem 6

Let T be a linear operator on a 2-dimensional space. Then W(T) is an
ellipse whose foci are the eigenvalues of T.

@ As W(U*TU) = W(T) so by Schur’s decomposition theorem, T
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0 X

November 1, 2025 8/81



The most fundamental theorem in the study of numerical range was
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@ If Ay = X2 = A, then W(T- Al) is a circular disc with centre at 0 and
radius 1|4
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@ If Ay = X2 = A, then W(T- Al) is a circular disc with centre at 0 and
radius 1|4

= W(T) is a circular disc with centre at \ and radius }|a|.
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@ If Ay = X2 = A, then W(T- Al) is a circular disc with centre at 0 and
radius 1|4

= W(T) is a circular disc with centre at \ and radius }|a|.

November 1, 2025 9/81



@ If \y # \» and a = 0 thenT = SN
0 X
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@ If \y # \» and a = 0 thenT = SN
0 X

— Forany x = (f,g) with |2 + |g|? = 1,
<TX,X> =\ |f|2 aF )\2|g|2 =tA\ + (1 = t))\g, where t = |f|2
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@ If \y # \» and a = 0 thenT = SN
0 X

— Forany x = (f,g) with |2 + |g|? = 1,
<TX,X> =\ |f|2 aF )\2|g|2 =tA\ + (1 = t))\g, where t = |f|2
= W(T) is the line segment joining A1 and Ax.
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0 X

— Forany x = (f,g) with |2 + |g|? = 1,
<TX,X> =\ |f|2 aF )\2|g|2 =tA\ + (1 = t))\g, where t = |f|2
= W(T) is the line segment joining A1 and Ax.

@ If \y # \» and a = 0 thenT = <)‘1 0).

A
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@ If Ay # X and a # 0, then we have

FoMtde, (M52 a )\ _ (re  a
- 2 - o )\2£>\1 - 0 _ 619 )

where 21522 = re’, 0 < ¢ < 2r.
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@ If Ay # X and a # 0, then we have

FoMtde, (M52 a )\ _ (re  a
- 2 - o )\2£>\1 - 0 _r619 )

where 21522 = re’, 0 < ¢ < 2r.

PPl [7— _ @/] = (6 —br> Wwhere b= ae",

@ Consider A= e ¢ [T - %l} .
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@ If Ay # X and a # 0, then we have

FoMtde, (M52 a )\ _ (re  a
2 o XM/jTRo0 -ré)

where 21522 = re’, 0 < ¢ < 2r.

PPl [7— _ @/] = (6 —br> Wwhere b= ae",

@ Consider A= e ¢ [T - %l} .

@ Letz=(f,g)and |f2 +|g|> =1, f=€*cosh,g = €Psind,
0 €[0,%], 0,8 € [0,2n].
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@ Then (Az,z) = r(cos? 6 — sin® ) + be(®~* sinf cos = x + iy,

where x = rcos26 + %sin 20cos(B—a+7), y=

% sin20sin(8 —a+7), v =argb.
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@ Then (Az,z) = r(cos? 6 — sin® ) + be(®~* sinf cos = x + iy,
where x = rcos26 + % sin20cos(8 —a+7), ¥y =

% sin20sin(8 —a+7), v =argb.

@ S0 (X — rcos20)? + y? = @ sin® 26.
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@ Then (Az,z) = r(cos? 6 — sin® ) + be(®~* sinf cos = x + iy,
where x = rcos26 + % sin20cos(8 —a+7), ¥y =

% sin20sin(8 —a+7), v =argb.

@ S0 (X — rcos20)? + y? = @ sin® 26.
@ This is a family of circles and we obtain their union.
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@ Then (Az, z) = r(cos? 8 — sin? ) + be'(®~*) sinf cos 6 = x + iy,
where x = rcos26 + % sin20cos(8 —a+7), ¥y =
% sin20sin(8 —a+7), v =argb.

@ So (X — rcos20)? + y? = @ sin® 26.

@ This is a family of circles and we obtain their union.

@ Let 20 = ¢ and so (x—rcos¢)2+y2:%sin2qﬁ, 0<¢ <.
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@ Then (Az,z) = r(cos? 6 — sin® ) + be(®~* sinf cos = x + iy,
where x = rcos26 + % sin20cos(8 —a+7), ¥y =
|b‘ sin20sin(8 —a+7), v =argb.

@ So (X — rcos20)? + y? = @ sin® 26.

@ This is a family of circles and we obtain their union.

@ Let20 = ¢ and so (x — rcos¢)? + y? = %sinzqﬁ, 0<¢<é.

@ Differentiating with respect to ¢, we get (x — rcos ¢)r = |b| Cos ¢.
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@ Then (Az, z) = r(cos? 8 — sin? ) + be'(®~*) sinf cos 6 = x + iy,
where x = rcos26 + % sin20cos(B —a+7), ¥y =

|b‘ sin20sin(8 —a+7), v =argb.

So (x — rcos26)? + y? = @ sin® 26.

This is a family of circles and we obtain their union.

Let 20 = ¢ and so (X — rcos ¢)? + y? = %sinzqﬁ, 0<¢<é.

Differentiating with respect to ¢, we get (x — rcos ¢)r = |b| Cos ¢.

Eliminating ¢ between the last two equations, we get
X2 2
67 + B |
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@ Thus W(A) is an ellipse with center at origin and minor axis |b|,

major axis \/4r2 + |b|2, foci at r and —r.

v
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@ Thus W(A) is an ellipse with center at origin and minor axis |b|,

major axis \/4r2 + |b|2, foci at r and —r.

W(A)

r
e

2
/
,///
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o Since A= e |T - 2:p21 , W(T) = W(e"A) + 22,
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@ Since A= e [T - #/] L W(T) = W(eA) + 2122 Now,
W(e'A) is an ellipse with foci at €r, —er,
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@ Since A=¢e " [T- @/} , W(T) = W(eA) + )\1+)\2 N

W(e A) is an ellipse with foci at €”r, —er, i.e., at 21522 A2 At

and the major axis has an inclination of 6 with the real axis.

November 1, 2025 14/81



@ Since A=¢e " [T- @/} , W(T) = W(eA) + )\1+)\2 N
A2 )\22)\1

W(e’A) is an ellipse with foci at e’r, —e’r, i.e., at 2
and the major axis has an inclination of 6 with the real axis.

N
N
%)

&
X
ONEN.

W(eA))
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@ Thus W(T) is an ellipse with foci at A1, \> and the major axis has
an inclination of 6 with the real axis.
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@ Thus W(T) is an ellipse with foci at A1, \> and the major axis has
an inclination of 6 with the real axis.

il W(T)
f 421 |2
o T
AR
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Numerical range of some 2 x 2 matrices:

(i) Let T be the linear operator on C? defined by the matrix

i 0
T= <o 2+3i>'

i
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Numerical range of some 2 x 2 matrices:

(i) Let T be the linear operator on C? defined by the matrix

i 0
T= <o 2+3i>'

Then W(T) is the line segment joining / and 2 + 3.

i
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Numerical range of some 2 x 2 matrices:

(i) Let T be the linear operator on C? defined by the matrix
i 0
T= <0 2+ 3i> '
Then W(T) is the line segment joining / and 2 + 3.

2+ 3i
—— W(T)
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Numerical range of some 2 x 2 matrices:

Example 8

(i) Let T be the linear operator on C? defined by the matrix

1+
T_(O 1+i)'

v
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Numerical range of some 2 x 2 matrices:

Example 8

(i) Let T be the linear operator on C? defined by the matrix

1+
T_(O 1+i)'

Then W(T) is the circular disc with center at 1 + / and radius 3.

v
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Numerical range of some 2 x 2 matrices:

Example 8

(i) Let T be the linear operator on C? defined by the matrix

(1P
T(o 1+i)'

Then W(T) is the circular disc with center at 1 + / and radius 3.

1) i W(T)

N
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Numerical range of some 2 x 2 matrices:

Example 9

(iii) Let T be the linear operator on C? defined by the matrix

AR
T—(o %)

-_—
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Numerical range of some 2 x 2 matrices:

Example 9

(iii) Let T be the linear operator on C? defined by the matrix

AR
T—(o %)

Then W(T) is the ellipse as shown in the following picture.

-_—
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Numerical range of some 2 x 2 matrices:

Example 9

(iii) Let T be the linear operator on C? defined by the matrix

AR
T—(o %)

Then W(T) is the ellipse as shown in the following picture.

w{ o

v s
2
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In case the dimension is greater than 2 then the numerical range is not
necessarily ellipse.
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In case the dimension is greater than 2 then the numerical range is not
necessarily ellipse.

Example 10

Let T be the linear operator on C2 defined by the matrix

2i 0 0
T=(0 1+4i 0 |.
0 0 —1—i
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In case the dimension is greater than 2 then the numerical range is not
necessarily ellipse.

Example 10
Let T be the linear operator on C2 defined by the matrix

2i 0 0
T=(0 1+4i 0 |.
0 0 —1—i

Then W(T) is the convex hull of the points 2/, 1 +/and —1 — i.
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In case the dimension is greater than 2 then the numerical range is not
necessarily ellipse.

Example 10

Let T be the linear operator on C2 defined by the matrix

2i 0 0
T=|0 1+i o0 |.
0 0 —1-i

Then W(T) is the convex hull of the points 2/, 1 +/and —1 — i.

2i

15
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(Toeplitz-Hausdorff Theorem) The numerical range W(T) of a
bounded linear operator T defined on a Hilbert space H is always
convex.

° Letfaﬁé W(T)7Where€: <Tf7f>a||f|| =1 » 11 = <Tg,g>a||g” =1
@ Fort=0ort=1,(1—-t)&+tne W(T).
@ Consider t € (0,1).

f+Ag
@ Foreach A € C, g7 € Su-

f+X 4+
® {(1 = 0+t = (Tyrisgh g

= AR+ e [2((1 — D¢+ tn} Re(N(f, 9)) — 2Re(A(TF, g))] - 1 =
0.

O
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= | AP +CA+ DX — %_t = 0, where C and D are complex constants
independent of \.

@ Considering A = x + iy, x> + y2 4+ ax + by — &5 = 0 and
cx +dy =0.

~———cx+dy=0
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= There exists two \ € C such that

(1 —=t&+tn=(Th,h), where h = ftAg

If + Agll

= The line segment joining ¢ and n is in W(T).

Another proof.

o Let&,ne W(T), where ¢ = (T, 1), |[f[ =1,n=(T9,9),ll9l = 1.

@ Let V be the subspace spanned by f and g, and P be the
orthogonal projection of H on V so that Pf = f and Pg = g.

@ Consider PTP : V — V so that (PTPf, f) = (Tf, f) and
(PTPg,9) = (19, 9).

@ W(PTP) is an ellipse and W(PTP) contains the line segment
joining ae and 3, and W(PTP) is contained in W(T).




We next use numerical radius to study the numerical range of some
special class of operators.

Definition 12
The numerical radius w(T) of an operator T on # is defined as
w(T) =sup{|(Tx,x)| : x € H,||x]| =1}.
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We next use numerical radius to study the numerical range of some
special class of operators.

Definition 13
The numerical radius w(T) of an operator T on # is defined as

w(T) =sup{|{Tx,x)| : x € H,||x|| =1}.
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@ Numerical radius is the radius of the smallest circle centred at
origin containing the numerical range W(T).

@ The spectral radius r(T) of an operator is defined as
r(T) =sup{|A|: A€ a(T)}.

o r(T)<w(T)<|T].
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Theorem 14
(i) T is selfadjoint iff W(T) is real.

(i) If T is selfadjoint then W(T) = [m, M], where
m=inf{(Tx,x) : ||x|| =1} and M = sup{(Tx, x) : || x|]| = 1}.
(iii) If T is selfadjoint then || T|| = w(T) = max{|m|, |M|}, where

m=inf{(Tx,x) : |x|| = 1} and M = sup{(Tx, x) : ||x|| = 1}.

(i)
@ If T is selfadjoint, then Vx € H, (Tx, x) = (x, Tx) = (Tx, x). Hence
W(T) is real.
e if (Tx, x) is real for all x € H, we have
(Tx,x) —(x, Tx) =0=((T—T*)x,x). Thus T — T* =0 or
T=T"
(i)
@ As the numerical range is a bounded subset of the reals so the
result follows trivially.

L
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Poof.
(i)
® w(T) = sup{|m|, M|}
@ Foranyreal A # 0, 4| Tx||? =
(TAX+A7TTx) A+ A7 Tx) — (T (Ax = A1 Tx) , Ax — A 1Tx)
® 4| Tx|[2 < w(T) |Ax+ A~ x| + [ax = X Tx|[?] =
2w(T) (A2[|x][2 + A2 Tx]|?) -
@ If x # 0, then taking \2 = HHZI”
@ Thus for all x € H, we get || Tx|| < w(T)||x|.
o [|T] <w(T)
© [|T|l = w(T) = max{|m|, [M]}.

we get || Tx|| < w(T)l|x].
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Ifw(T)=|T|, thenr(T)=|T]|.

@ Letw(T)=|T|=1.
@ Then there is a sequence of unit vectors {x,} such that
(TXn, Xn) > A€ W(T), |\ =1.

@ From|(Txn, Xn)| < || Txn|| < 1, we have || Txy|| — 1.
® [[(T = A)Xql|? = || TXal|® — (TxXn, AXn) — (AXn, TXn) + [|Xn]|® — 0.
@ A€ oyp(T)and r(T) =1.
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Theorem 16
If W(T) is a line segment then T is normal.

@ Let T be a bounded linear operator such that W(T) is a line
segment.

@ Suppose that ) is a point on the line segment with inclination 6.
@ Then W(e (T — \I)) is contained in the real axis.
@ Thus e /(T — \l) is selfadjoint and so
[e7 (T — \D]* = e (T — \I).
@ T =X\+e20(T - ).
@ TT*=AT+e20T(T - \)=T*T.
@ T is normal.

Ol
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The class of normal operators have some nice properties related to
numerical range and numerical radius.

Let T be a normal operator. Then
(@) w(T) =TI
(i) w(T) =r(T).

(iii) W(T) = co(a(T)).
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Theorem 18

In finite dimensional space, the numerical range of a normal operator
is a polygon.

@ Let T be normal operator acts on a finite dimensional space .
@ Thus W(T) is closed.
@ It follows from Theorem17 (iii) that W(T) = co(o(T)).

@ As H is finite dimensional, o(T) contains atmost finitely many
elements.

@ So W(T) is a polygon.
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(i) If T is unitary then W(T) is a polygon inscribed in the unit circle.
(i) There exist operator T which is not normal but W(T) is a polygon.

Example 19

. A0 00
@ Consider T = (O B) , where A= (0 1) and

i 0 0
B=|0 3-i 0 |.
0 0 -3-i

@ Then W(T) = co(W(A)U W(B)) = co{i,3 —i,—3 — i}.
@ This is a polygon but T is not normal.
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Numerical radius inequalities

Inequality 20
(Classical Numerical radius inequalities)
@ LetT € B(H), then

AT < w(T) < 7). (1)

@ Moreover, if T is normal, then w(T) = || T|| = r(T). If T?> = 0, then
w(T) =3Il

v,
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Inequalities using Cartesian decomposition of operator

First, we recall the following.

Definition 21

A function f : | — R defined on an interval | C R is said to be convex
if, for all x1, X2 € I and for all A € [0, 1], the following inequality holds:

fOX + (1= XN)x2) < M(xq) + (1 — Nf(xe).
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Inequalities using Cartesian decomposition of operator

First, we recall the following.

Definition 21

A function f : | — R defined on an interval / C R is said to be convex
if, for all x1, X2 € I and for all A € [0, 1], the following inequality holds:

fOX + (1= XN)x2) < M(xq) + (1 — Nf(xe).

In [14], Kittaneh gives a refined upper and lower bound of (1) using
Cartesian decomposition and the convexity of functions.

Inequality 22

(A refinement of Classical Numerical radius inequalities)
If T € B(H), then

1 1
Z”T*T+ TT”‘||§W2(T)§§||T"‘TqL T . (2)
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Inequalities using Cartesian decomposition of operator

@ Suppose that T = B + iC is the Cartesian decomposition of the
operator A.

@ Let x € H be arbitrary.

@ It follows from the convexity of the function f(t) = t2 that

(Tx, x)[? = (Bx, )% + (Cx, )2 > Z(I{Bx, x)| + |{Cx, x)|)?

((B£ C)x, x)[2.

I\JI—*MI—L

L]
v
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Inequalities using Cartesian decomposition of operator

@ So

wA(T) = sup {|(Tx, X)[2: x € A, ||x|| = 1}
{|<(Bic> ol erHxH:1}
(Bi—C)f—HBiCHQ H(BiC)zu
@ Hence
2w(7) 2 5 |8+ 07| + 5 18- o7
2%H(B+C)Z+(B—C)ZH

_ HB2 + 02H - % IT*T + TT*| .
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Inequalities using Cartesian decomposition of operator

@ For every unit vector x € H, it follows from the Cauchy-Schwarz
inequality that

(Tx, )2 = (Bx, x)? + (Cx, x)? < || Bx||? + || Cx|[®

(B (i
<

(54 %) ).

@ Therefore,
wB(A) = sup {|(T, X) : x € 7, ] = 1}
< sup {{( (B2 + C?) x.x) : x € x| = 1]

- H82 + 02H - % IT*T + TT*|
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Inequalities using Cartesian decomposition of operator

Now, we present the following nontrivial improvement of the first
inequality in (1), that is, %H T|| < w(T) and the second inequality in (2).
Note an elementary identity that max{a, b} = } (a+ b+ |a— b|) for
abeR.

Inequality 23

Let T € B(H), then

ITI | IRe(T)[| — [[Em(T)]| |
> + 5 : (3)

@ Let x € H with ||x|| = 1.

@ Then from the Cartesian decomposition of T we have,
[(Tx, x)2 = |(Re(T)x, X)[? + [(Im(T)x, x) .

@ This implies w(T) > |[Re(T)|| and w(T) > | Im(T)||.

L]
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Inequalities using Cartesian decomposition of operator

w(T) = max{|[Re(T)], HIm(T)II}

_ [Re(T)[| + [[tm(T \ IRe(T)I| — [Im(T)]| |
2 2
[Re(T) + ilm(T)]| +\ IRe(T)|| — [[tm(T)]| |
= 2 2
_ AT, | IRe(T)] — [Im(T)]| |
= a2 2 ‘
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Inequalities using Cartesian decomposition of operator
Corollary 24

Let T € B(H). If w(T) = ITL, then [[Re(T)|| = |[Im(T)| = LZL.

@ From Inequality (3), we have
T Re(T)||—|[Im(T T
W(T)ZH_2H+I [[Re( )||2|| (Ml lZH—QH.

o This implies that if w(T) = I, then |[Re(T)|| = |[Im(T)|.

@ Also [[Re(T)|| < w(T) = ITI = IR(MHIm(T)I|  [Re(THIm(T _
[Re(T)]|

@ So |Re(T)|| = |lim(T)|| = L.
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Inequalities using Cartesian decomposition of operator

We next derive an improvement of the first inequality in (2).

Let T € B(H), then

1 " 1
WAT) 2 ZIITT+ 7T+ 5 | [Re(T)2 = [Im(T)|? |- (4)
@ Let x € H with ||x|| = 1.

@ Then from the Cartesian decomposition of A we get,
[(Tx, x)[% = [(Re(T)x, x)|? + [(Im(T)x, x)|2.
@ This implies w(T) > |[Re(T)| and w(T) > |[Im(T)]|.
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Inequalities using Cartesian decomposition of operator

@ So
wA(T) = max {|[Re(T)|2, |im(T)|?}
_ IRe(T)2+ ()| | |IIRe(T)[[2 — lim(T)[?)
- 2 - 2
_ IRe(T)?) + am(T))?] , [[Re(T)|> ~ [lim(T) ||
2 2

> IRP 4 On(DPY , JIRDIE — (T

U e 7 o LIRS(T)I2 = [Im(T)|]
= Z||T T+TTY + 5 .

L]
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations
For any x, y € H, the Cauchy-Schwarz inequality asserts that

[l < Xyl

This classical result was later refined in an elegant form by Buzano [8],
as stated below.
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

For any x, y € H, the Cauchy-Schwarz inequality asserts that

[l < Xyl

This classical result was later refined in an elegant form by Buzano [8],
as stated below.

Inequality 26

Letx,y,e c H with|e|| =1. Then

[(x,e) (e y)] < %(IIXII Y[+ 10631 - (5)
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

For any x, y € H, the Cauchy-Schwarz inequality asserts that

[l < Xyl

This classical result was later refined in an elegant form by Buzano [8],
as stated below.

Inequality 26

Letx,y,e c H with|e|| =1. Then

[(x,e) (e y)] < (||X|| Y[+ 10631 - (5)

Abu-Omar and Kittaneh in [1] proved the following inequality

wA(T) < Jw(T?) + ¢ |17+ 172 ©)
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

By using Buzano’s inequality we extend the above inequality. First we
need the following inequality.

Inequality 27

(Hélder—-McCarthy inequality)
Let T € B(H) be positive and let x € H with ||x|| = 1. Then

(Tx, x)" <{(T'x,x), r>1. (7)

The inequality is reversed when 0 < r < 1.
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 28
Let T € B(H) and let x € H with ||x|| = 1. Then

1 1 .
[(Tx, )P < (T2 01 + 7 (T + | T2)x, x) ®)

forallr > 1.
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

@ By considering a= Tx, b= T*x and e = x in (5), we get
[(Tx,x) P < 5 (KT2x, )|+ | TI| (1 T*x]]) -

@ From the convexity of the real function f(t) = t" (r > 1), we derive
that

>|2r

—

-
(172 x1" + 1717 1711

N —
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

@ Then
(T, X) "
< 5 (Km0 + (uTx||2’+|rT*xu2’))
— 5 (K700 + GUTRR R+ T Prx))
< 3 (K700 + 3% R + (T Fx0)) oy
- %\<T2x,x>|f (TP TP x)
L]

v
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 29
Suppose that T € B(H). Then

< (9)

w¥(T) < Sw(T?)+

%|T|2r+ (1 _ %OZ) |T*|2r

forallr > 1 and for all « € [0,1].

@ Let x € H be a unit vector.
@ It follows from the Cauchy—Schwarz inequality that
[(Tx, )| = al(Tx, )|+ (1 =) (Tx, X)| < a(TX, X)|+ (1 =) | T*x]|.
L]

o
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

@ From the convexity of f(t) = 2" (r > 1), we infer that

(T, x)

al(TX, P + (1= )| T*x] "

al(Tx, 0"+ (1= a)(IT* %, %) (by (7))

SUT X+ 2 (TP + 1T %, x) + (1 = a)(| T*Fx, x)
(by 8)

(T2, 01+ ({5 (1T +ITF") + (1 = o) T} x,x)

(T2, %) + <{|T|2’+ (1 . Sa) |T*|2’}x,x>
4 4

reT2 O or _§ | 2r

w'(T?)+ | 21T +<1 4a>|T\ .

IN A

I IA

N2 N2 N

<




Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

@ Taking the supremum over all unit vectors x € H we obtain
inequality (9).

\

It is remarkable that with

010
T=100 2
0 0O

we observe that the inequality 9 for r = 1 generalize and improve
inequality (6).

v
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Inequality 30

(Mixed Cauchy-Schwarz inequality)
Let T € B(H). Then

(T, )| < (IT1x, 012 (T %, )12,

forall x € H,

Kato [13] generalized the mixed Cauchy-Schwarz inequality to a
bounded linear operator T € B(#). He proved that

(TP < (ITP x,x) (IT Py, y) (10)

forall x,y € Hand all « € [0, 1].
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

Next, Kittaneh gives an extension of Kato’s generalized mixed
Cauchy-Schwarz inequality. It states as follows.

Inequality 31
[16, Th. 1]Let T € B(H) andletx,y € H. If f and g are two
non-negative continuous functions on [0, o) satisfying

f(t)yg(t)=t, t>0, then

(T, )P < (PUTXX) (AT Dy v ) - (1)
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

By using mixed Cauchy-Schwarz inequality, we obtain the following
refined numerical radius inequality of (2).

Inequality 32
For an operator T € B(H), it holds that

wA(T) < 2 ||| TR+ 7P| + Sw (T (12

@ Let x € H be a unit vector.
@ It follows from the inequality (10) that
(T, )12 < (ITIx, ) (| T*[x, X).
@ An application of the Buzano inequality gives that

(TP x) (x| Tlx) < SITIXIHITT X+ 5 KT |x, [ T]x)]-
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

@ Hence
(T, x) 2
1 : LR
< 2 (T2 + IT1xIP) + 5 1 THT 1%, 00
= 2 ((ITPxxy+ (1T 1Bx, X)) + 5 KITI T x, %))
1 2 * *
= (TP HITR) xx) + S 1T )
1 * *k
< Zlhre e+ Swarir.
@ Taking the supremum over ||x|| = 1 we obtain that
1 * >k
wA(T) < 2P+ 17 + Jw T,
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

The inequality in (12) refines the second inequality in (2). As
w(ITIIT*) < IITIT*|ll = [ 2], so

T+ T -

e ]+ Swamir

< Jlreere

< ‘11 TR+ |T*2 +%H|T\2+|T*\2H
1
2
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Inequalities using Cauchy-Schwarz inequality and it’s

generalizations

Next, we present another refined numerical radius inequality by using
generalized Cauchy-Schwarz inequality and convexity of a function
f(t) = %",

Inequality 33

Let T € B(H). Then

W?(T) < [[al TP + (1 = ) TP

forallr > 1 and0 < « < 1. In particular,

2 z 2 * 2
wA(T) < min (o TP+ (1 - )| T(]. (13)
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Inequalities using Cauchy-Schwarz inequality and it’s
generalizations

Remark 4
@ (13) generalizes the second inequality in (2) to the form

w3(T) < |aT*T+(1 —a)TT*|, a€[0,1].

@ However, the first inequality cannot be generalized to the form

1
> laT*T +(1 —a)TT*| < W3(T), acl0,1]

. 0 1
@ Consider T = (0 O>’

© Then3 =1 ||aT*T+ (1 —a)TT*|| £ w¥(T) =] fora =

November 1, 2025 58/81
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Inequalities using Bernau and Smithies inequality
Inequality 34

(Bernau and Smithies inequality)
Let T € B(H). Then

17|12 + [(T2x, x)| < 2w(T)|| Txl||x]|,

forall x € H.

@ Let A and 0 be real numbers, A # 0.
@ Then we have

| Tx||2 + €®0(T?x, x) = (A’ T2x + A& Tx, \e’ Tx + A" x)

(Ae??T2x — X\ 1eTx, X Tx — A7),

L]
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Inequalities using Bernau and Smithies inequality

@ Since |(Ty,y)| < w(T)|y||? for all y, it follows that
I1Tx]1% + €2 (T2x, x)]|
< %w( TN Tx + A7 x|2 + A& Tx — X" x|2)
= w(T)(¥2(| Tx||2 + X72||x|[2).

@ If Tx # 0, we choose 6 so that €(T?x, x) = |(T?x, x)|, and \ so
that \2|| Tx|| = ||x||.
@ Therefore, || Tx||? + [(T?x, x)| < 2w(T)| Tx||||x]|.
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Inequalities using Bernau and Smithies inequality
Inequality 35

(A generalization Bernau and Smithies inequality)
LetA, T,B e B(H). Then

[(A*TBx, x)| + [(B" TAx, x)| < 2w(T)||Ax|[||Bx|,

for all x € H.

@ Suppose that x € H and 6, ¢ are real numbers such that

e'*(B* TAx, x) = |(B*TAx, X)|,

ezi9<e—i¢A* TBx, x) = \(e—"(ﬁA* TBx, x)| = [(A*TBx, x)|.

@ Consider a nonzero real number ).
]
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Inequalities using Bernau and Smithies inequality

@ Then

26" <TBX, e’¢Ax> + 2€'?(TAx, Bx)
— <<ei9T ()\eian + le’¢Ax) . \e'Bx + le’¢Ax>
— <e’9T <>\e"’Bx — le’¢Ax) . \e''Bx — le’¢Ax> .
@ Hence,
262/ <e—"¢A* TBx, x> + 26 (B* TAx, x)

= <ei9T <>\eieBx + 1ei¢Ax> . \e'Bx + lei¢Ax>

) . ) . '
—{e’T )\e’eBX—%e"i’Ax ,)\e’GBX—Xe"f’Ax
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Inequalities using Bernau and Smithies inequality

@ So,

2|(A*TBx, x)| + 2|(B" TAx, x) |

A A

- <e’9T (/\eieBx - le’¢Ax) . \e''Bx — le’¢Ax>

= <e’9T <)\e’98x - 1e"‘f’Ax> e Bx + 1e"z’Ax>

@ Therefore,
2|(A*TBx, x)| + 2 |(B* TAx, x)|

<| <e’9T <)\e"’BX + j\e’¢Ax> ,\e' Bx + le’¢Ax> |

i <e"9T ()\e"’BX - le’¢Ax> . \e'Bx — lei¢Ax>
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Inequalities using Bernau and Smithies inequality

@ Hence,
2)

’
[(A*TBx, x)| + |(B* TAx, x)| < w(T) <A2]\Bx]|2 + A2HAxn?) .

2|(A*TBx, x)| + 2|(B* TAx, x)|
<MUO

2

. 1. . '
e’ Bx + Xe“be \e'?Bx — Xe"’be

d

@ Thus,

|| Ax

@ If ||Bx| # 0, then we can choose \? = HBXH to get

|(A*TBx, x)| + [(B* TAx, x)| < 2w(T)|Ax||||Bx]||.

@ Clearly, this inequality is valid when ||Bx|| = 0.
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Inequalities using Bernau and Smithies inequality

Considering A= T and B = | in the above inequality, we get the
Bernau and Smithies inequality

1712 + [{ T2, x)| < 2w(D| Tllixdl,  x € H.

By using this generalization we get the following numerical radius
inequalities for product of three operators.

Theorem 36
LetA, T,B e B(H). Then

(i) c(A"TB) + w(B"TA) < 2w(T)||All||B|
(il) w(A*TB) + c(B* TA) < 2w(T)||A[||B].
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Generalized Numerical Ranges

@ In this section, we focus on the numerical range of operators
acting on a Hilbert space (#, (-, -)) equipped with an additional
semi-inner product determlned by a positive operator A.

@ Specifically, this semi-inner product is defined by (x, y) = (Ax, y)
for all x, y in the concerned space.

@ Bai2(H)={T € B(H) : 3 ¢ > 0such that || Tx||a < c||x]|a VX €
H}.
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Definition 37

(A-Numerical Range) Let T € B,1,2(H). The A-numerical range of T,
denoted by W,(T), is defined as the collection of complex scalars
(Tx, x)a for x € H with || x]|a =1, i.e.,

WA(T) = {<TX7X>A :X €EH, HXHA = 1}

@ Let T € Byi2(H). Then Wx(T) is a convex subset of C.
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Definition 38

(A-eigenvalue) Let T € B,1/2(#). Then A € Cis said to be an
A-eigenvalue of T if there exists A € C such that ATx = M\Ax}.

Definition 39

(A-reducing eigenvalue) A complex number X\ € C is said to be an
A-reducing eigenvalue of T € Ba(H) if ATx = MAx and AT*x = \Ax,
for some nonzero x € R(A).
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Then we have the following results.

@ Let A be in the boundary of Wx(T). If A is an A-eigenvalue of T
then it is an A-reducing eigenvalue of T.

@ Let T € Ba(H). If A, u are distinct A-eigenvalues of T with X in the
boundary of Wx(T) then A-eigenvectors associated with A and p
are A-orthogonal to each other.

@ Let T € Ba(H) be an A-selfadjoint operator. If A € Wy(T) and
T <a M then \is an A-reducing eigenvalue of T.

@ Every corner point of W4(T) is an A-reducing eigenvalue of T.
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Generalized Numerical Ranges

Definition 40

(Joint numerical range) For an n-tuple T = (Ty,---, Tp) € B(H)", the
joint numerical range of T is defined as

W(T)=W(Tq, -, Tp) ={((T1x,X), - ,{Tox, X)) : x € H,||x|]| =1} .

@ The joint numerical range does not always satisfy the convexity
property.

@ Consider Ty = (? ;) Ty = <? (’)> and Ts = <2) ?) .

@ W(Ty, T, T3) is not convex.
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Next we state some basic convexity properties of the joint numerical
range.

Proposition 41

LetT =(Ty,---,Ty) be an n-tuple of operators on H.
(i) W(T) is convex if and only if W(T,I) is convex.

(ii) IfW(T) is convex and Sy, S», -+, Sy arein span{Ty,--- , Tp},
then W(Sy, Ss, - -, Sm) is convex.

(iii) Let{Sy, Sy, -+, Sm} be a basis of span{Ty,---, Tp}. Then W(T)
is convex if and only if W(Sy, Sy, - - - , Sm) is convex.
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Generalized Numerical Ranges

Definition 42

(C-numerical range) For n x n matrices T and C, the C-numerical
range is defined as

We(T) = {tr(CU*TU) : Uis an n x n unitary matrix}.

Two subclasses of the C-numerical ranges are c-numerical range and
k-numerical range.
@ For any vector ¢ = (¢q, ¢, - -+, ¢n) € C", the c-numerical range of
T is defined as
Wc( T) =

n
{Z Ci(Txi, X;) : {X1, X2, -, Xn} orthonormal basis of C”} .
i=1
@ For any k,1 < k < n, the k-numerical range is defined as
Wi (T) =
n
{}( SHATX;, Xi) = {Xq, X2, -+ , Xn} orthonormal subset of (C”}.

i=1
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Remark 6
@ Wi(T) is We(T) for C = diag(ct, Ca, -+ -, cn), Wk(T) is We(T) with
c=(1/k,---,1/k,0,---,0) inC", and W, (T) with k = 1 is the
classical numerical range W(T) of T.
@ The C-numerical range of an operator is not always convex.
@ For example, consider T = C = diag(0,1, i), then W¢(T) is not
convex.
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Generalized Numerical Ranges

Although the previous example showed non-convexity, the C-numerical
range can still be convex for some following particular cases.

(i) If T and C are 2 x 2 matrices then W(T) is a elliptic disc and
hence is convex.

(if) If T and C are n x nmatrices and C is Hermitian then W¢(T) is
CONnvex.
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Generalized Numerical Ranges

Definition 43

(g-numerical range) For a bounded linear operator T on # and a
complex number g with |g| < 1, the g-numerical range of T, denoted

by Wq(T), is defined as
Wo(T) = {(Tx,y) - x,y e 1, |Ix|| = 1, [lyl[ = 1,(x,¥) = q}.

@ If g =1 then Wy(T) reduces to the classical numerical range
w(T).
@ For |q| <1, Wy(T) is convex.
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Problem 1

@ Let T be a bounded linear operator on .
o Itis well-known that w(T) > 3|| 7T + TT*||z > IZL,
@ A well-known characterization of the numerical range states that

w(T) = IZLif and only if W(T) is a circular disk with center at the
origin and radius Hzﬂ

@ In [2], we proved that W(T) is contained in a closed circular disk
and contains a semi-circular disk with center at the origin and
radius 3| T*T + TT*H% if and only if the numerical radius attains

its lower bound } (| T*T + TT*|2.
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Problem 1

Open Question 1

(1) Does the equality w(T) = }||T*T + TT*| 2 imply that W(T) is a
closed circular disk? If not, then provide an example.

(2) Does there exist a lower bound, say, I(T), for the numerical radius
w(T) which satisfies w(T) > I(T) > %|| T+ TT*||% and the
closure of the numerical range is a circular disk with center at
origin when w(T) = I(T) > 3| T*T + TT*| 27

v
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Problem 2

@ Let T € My(C). Then the numerical radius w(T) satisfies
w(T) < |IT].

@ In [3], we established a generalization and improvement of the
above inequality, namely,

W(T) < |aT*T + (1 —a)TT"|2,

forall o € [0, 1].

@ Itis easy to observe that if T is a normal matrix then
w(T)=||laT*T + (1 — a)TT*||%, for all o € [0,1].

Open Question 2

@ [t leads us to the question whether the above equality holds for
non-normal matrices, for all o € [0, 1].
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Problem 2

@ For a normal matrix T, whose w(T) = [|aT*T + (1 — a)TT*H% for
all « € [0, 1], the boundary of the numerical range OW(T) is not
smooth.

@ Also, there exists a non-normal matrix T for which
W(T) = [|aT*T + (1 — a)TT*|2 for all « € [0, 1], and the
boundary of W(T) is not smooth.

020
@ For example, consider T= |0 0 0] ,then W(T) is a convex
0 0 2
hull of {z € C: |z] <1} U {2}, which is not smooth.
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Problem 2

In this context, the following two questions arise:

Open Question 3

1) Ifw(T)=|aT*T+ (1 — a)TT*||%, for all o« € [0, 1], then prove or
disprove that the boundary of the numerical range OW(T) is not
smooth.

(2 Ifw(T)=|aT*T+ (1 — a)TT*||%, for some a € [0, 1], then prove
or disprove that the boundary of the numerical range OW(T) is not
smooth.

o
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Thanks for your kind
attention
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