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Abstract

This study investigates the conditional Hyers�Ulam stability of �rst-order

nonlinear logistic models, both continuous and discrete. Identifying bounds

on both the relative size of the perturbation and the initial population size

is an important issue for nonlinear Hyers�Ulam stability analysis. Utilizing a

novel approach, for h-di�erence equations we derive explicit expressions for

the optimal lower bound of the initial value region and the upper bound of

the perturbation amplitude, surpassing the precision of previous research.

Furthermore, we obtain a sharper Hyers�Ulam stability constant, which

quanti�es the error between true and approximate solutions, thereby

demonstrating enhanced stability. The Hyers�Ulam stability constant is

proven to be in terms of the step-size h and the growth rate but

independent of the carrying capacity. Detailed examples are provided

illustrating the applicability and sharpness of our results on conditional

stability.
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Hyers�Ulam Stability (HUS)

Stanislaw Ulam, in A Collection of Mathematical Problems, 1960,

posed the following question:

When is it true that the solution of an equation di�ering slightly

from a given one, must of necessity be close to the solution of the

given equation?
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Hyers�Ulam Stability (HUS)

De�nition

The equation

y∆(t)− F (t, y) = 0, t ∈ T,

is Hyers�Ulam stable if there exists a constant κ > 0 with the following

property: For any ε > 0, and for any function ϕ : T→ C such that∣∣∣ϕ∆(t)− F (t, ϕ)
∣∣∣ ≤ ε, t ∈ T,

there exists a solution y : T→ C of y∆(t)− F (t, y) = 0 such that

|ϕ(t)− y(t)| ≤ κε, t ∈ T.

Such κ is called an Ulam stability constant for y∆(t)− F (t, y) = 0.
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Hyers�Ulam Stability (HUS)

De�nition

For any ε > 0, and for any function ϕ : T→ C such that∣∣∣ϕ∆(t)− F (t, ϕ)
∣∣∣ ≤ ε, t ∈ T,

there exists a solution y : T→ C of y∆(t)− F (t, y) = 0 such that

|ϕ(t)− y(t)| ≤ κε, t ∈ T.

Questions:

Given the approximate solution ϕ, is the exact solution y unique?

What is the minimum κ?

Are there conditions on ε?

Are there conditions on F?
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Logistic Di�erential Equation

For T = R, consider the di�erential equation

P ′(t) = rP(t)

(
1− P(t)

K

)
,

where P(t) is the population at time t, r is the growth rate and K is the

carrying capacity.
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Conditional Hyers�Ulam Stability (CHUS)

The autonomous equation

dy

dt
− F (y) = 0, t ∈ [0,Ty ),

is conditionally Ulam stable in the class

C =
{
y ∈ C 1[0,Ty ) : y(0) ∈ D,Ty > 0

}
if ∃ constant κ > 0 such that for each ε ∈ (0, εmax] and every approximate

solution ϕ ∈ C satisfying∣∣∣∣dϕdt − F (ϕ)

∣∣∣∣ ≤ ε, t ∈ [0,Tϕ)

∃ a solution y ∈ C of dy
dt − F (y) = 0 such that

|ϕ(t)− y(t)| ≤ κε, t ∈ [0,min{Ty ,Tϕ}).
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Popa, Rasa, Viorel (2018)

First Result (2018): The rescaled logistic di�erential equation

y ′(t) = y(t) (1− y(t))

is conditionally Hyers�Ulam stable in the class

C =

{
y ∈ C 1[0,∞) : y(0) ≥ 1

2

}
for each ε ∈ (0, 1

4
] with HU stability constant κ = 2.
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Popa, Rasa, Viorel (2018), continued

Meaning: Given 0 < ε ≤ 1
4
, if ∃ approximate solution ϕ such that∣∣ϕ′(t)− ϕ(t) (1− ϕ(t))

∣∣ ≤ ε, ∀t ≥ 0,

with ϕ(0) ≥ 1
2
, then ∃ exact solution y of

y ′(t)− y(t) (1− y(t)) = 0, y(0) = ϕ(0),

such that

|ϕ(t)− y(t)| ≤ 2ε, ∀t ≥ 0.
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Onitsuka (2021)

Fix a 6= 0 and b 6= 0. The logistic-type di�erential equation

y ′(t) = y(t) (a + by(t))

is conditionally Hyers�Ulam stable in the class

C =

{
y ∈ C 1[0,∞) : by(0) ≤ −a

2

}
for each ε ∈

(
0, a2

4|b|

]
with HU stability constant κ = 2

|a| .
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Onitsuka (2021), continued

In particular, the logistic di�erential equation

P ′(t) = rP(t)

(
1− P(t)

K

)
is conditionally Hyers�Ulam stable (CHUS) in the class

C =

{
y ∈ C 1[0,∞) : P(0) ≥ K

2

}
for each ε ∈

(
0, rK

4

]
with HU stability constant κ = 2

r .
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Logistic: Approximate and Exact Solutions

Figure: With small perturbation ε and large initial population, the logistic
equation is HU stable.
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Logistic: Approximate and Exact Solutions

Figure: With large perturbation ε the logistic equation is HU unstable.
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Logistic: Bifurcation for Speci�c Pertubations

ϕ′ = ϕ(1− ϕ)− t

4(t + 1)
, ϕ0 =

1

2
− BesselK[0, 1]

2BesselK[1, 1]
+ 0.001

Figure: With small perturbation ε and small initial population, HU stable.
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Logistic: Bifurcation for Speci�c Pertubations

ϕ′ = ϕ(1− ϕ)− t

4(t + 1)
, ϕ0 =

1

2
− BesselK[0, 1]

2BesselK[1, 1]
− 0.001

Figure: With small perturbation ε and slightly smaller initial population, HU
unstable.
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Logistic: Bifurcation for Speci�c Pertubations

ϕ′ = ϕ(1− ϕ)− 1

4
cos(2t), ϕ0 = 0.05449603614163

Figure: With small perturbation ε and smaller initial population but still HUS.
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Logistic h-Di�erence Equation

Given h > 0, set T := {0, h, 2h, 3h, . . .}, and de�ne

∆hP(t) :=
P(t + h)− P(t)

h
.

The logistic growth h-di�erence equation we consider is

∆hP(t) =
rP(t) (K − P(t))

K + hrP(t)
, (1)

where P is the population size at time t of some species, r > 0 is a

growth-rate coe�cient, h > 0 is the step size, and K > 0 is the carrying

capacity. When h = 1, this equation is called the Beverton-Holt equation.
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Logistic h-Di�erence Equation: Perturbations

Let ε > 0 be arbitrarily given. Then the following equations

∆hβ(t) =
rβ(t) (K − β(t))

K + hrβ(t)
+ q(t), |q(t)| ≤ ε, (2)

∆h`(t) =
r`(t) (K − `(t))

K + hr`(t)
− ε, (3)

and

∆hu(t) =
ru(t) (K − u(t))

K + hru(t)
+ ε (4)

for t ≥ 0, where q : T→ R, are perturbations of (1) that will play a key

role in the analysis that follows below. Throughout this talk, we assume

the initial conditions

P(0) = β(0) = `(0) = u(0) = P0. (5)
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De�nition (Conditional Hyers�Ulam Stability)

Let [0,TP)h := [0,TP) ∩ T be the maximal interval of existence for a

function P . Let D ⊆ R be nonempty. De�ne the class

CD := {P : [0,TP)h → R : P(0) ∈ D,TP > 0} .

Let ε ∈ S ⊆ (0,∞). The nonlinear h-di�erence equation

∆hP(t) = F (P(t)) (6)

is conditionally HU stable in CD on [0, min {TP ,Tφ})h with S if ∃ κ > 0

s.t. for every ε ∈ S and every approximate solution φ ∈ CD that satis�es

|∆hφ(t)− F (φ(t))| ≤ ε for 0 ≤ t < Tφ, (7)

∃ solution P ∈ CD of (6) such that

|φ(t)− P(t)| ≤ κε for 0 ≤ t < min{TP ,Tφ}.
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Proposition

Proposition

Let P : [0,TP)h → R, β : [0,Tβ)h → R, ` : [0,T`)h → R, and

u : [0,Tu)h → R be the solutions of (1), (2), (3), and (4) with initial

condition (5), respectively. If

0 < ε ≤
K
(√

1 + hr − 1
)2

h2r
and P0 ≥

K
(√

1 + hr − 1
)

hr
,

then TP = Tβ = T` = Tu =∞, and

K
(√

1 + hr − 1
)

hr
≤ `(t) ≤ β(t) ≤ u(t) and `(t) < P(t) < u(t)

hold for all t ∈ (0,∞)h.
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Example of HUS

Consider (1), (2), (3), and (4) with h = r = K = 1. According to

Proposition 1, if

0 < ε ≤
(√

2− 1
)2

and P0 ≥
√
2− 1

hold, then the solution P and approximate solutions β, `, and u of (1), (2),

(3), and (4), respectively, with initial condition (5) satisfy

TP = Tβ = T` = Tu =∞ and

√
2− 1 ≤ `(t) ≤ β(t) ≤ u(t) and `(t) < P(t) < u(t)

for all t ∈ [0,∞)1.
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Example of HUS (continued)

Solution orbits of β (red) with h = r = K = 1 and q(t) = 0.01(−1)t , `
(black), and u (blue), given the initial condition β(0) = `(0) = u(0) = 0.5
and ε = 0.01. Notice that the solution orbit of β (red) is bounded between

the others.

5 10 15
t

0.5

1
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Technical Lemma #1

Suppose that

0 < ε ≤
K
(√

1 + hr − 1
)2

h2r
and P0 ≥

K
(√

1 + hr − 1
)

hr
.

Let P , `, and u be the solutions of (1), (3), and (4) with initial condition

(5), respectively. Then, TP = T` = Tu =∞,

r(K 2 − hr`(t)P(t)− K (`(t) + P(t)))

(K + hr`(t))(K + hrP(t))

< −
√
1 + hr − 1

h
√
1 + hr

(1 + hr)
t
2h

+ 1

2 − (1 + hr)−
t
2h

+ 1

2

(1 + hr)
t
2h

+ 1

2 + (1 + hr)−
t
2h

=: F (t)

holds for all t ∈ (0,∞)h, as it does with ` replaced by u.
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Technical Lemma #2

Let ε > 0, and from previous slide let

F (t) := −
√
1 + hr − 1

h
√
1 + hr

(1 + hr)
t
2h

+ 1

2 − (1 + hr)−
t
2h

+ 1

2

(1 + hr)
t
2h

+ 1

2 + (1 + hr)−
t
2h

. (8)

Then the function

Ω(t) := εh
√
1 + hr

·

(
eF (t, 0) +

1√
1 + hr − 1

(1 + hr)
t−h
2h

+ 1

2 − (1 + hr)−
t−h
2h

+ 1

2

(1 + hr)
t−h
2h

+ 1

2 + (1 + hr)−
t−h
2h

)
solves the linear h-di�erence equation

∆hΩ(t) = F (t)Ω(t) + ε
√
1 + hr

(1 + hr)
t−h
2h

+ 1

2 + (1 + hr)−
t−h
2h

(1 + hr)
t
2h

+ 1

2 + (1 + hr)−
t
2h

with the initial condition Ω(0) = 0.
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Technical Lemma #3

Lemma

Let ε > 0, and let ω(t) satisfy ω(0) = 0 and the linear h-di�erence
inequality

∆hω(t) ≤ F (t)ω(t) + ε

for t ∈ [0,∞)h, where F (t) is given previously. Let Ω(t) be given on the

previous slide. Then Ω(t) ≥ ω(t) for all t ∈ [0,∞)h.
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Main Theorem

Theorem (Conditional HUS)

Suppose that

0 < ε ≤
K
(√

1 + hr − 1
)2

h2r
and P0 ≥

K
(√

1 + hr − 1
)

hr
.

Let P (exact) and β (approx) be the solutions of (1) and (2) with

P(0) = β(0), respectively. Then, TP = Tβ =∞, and

|β(t)− P(t)| ≤ h(1 + hr)√
1 + hr − 1

ε

holds for all t ∈ [0,∞)h. That is, equation (1) is conditionally Hyers�Ulam

stable with Hyers�Ulam stability constant κ = h(1+hr)√
1+hr−1 .
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Remark on Implications of Main Theorem

The main theorem implies the following fact: (1) is conditionally HUS in

class CD on [0,∞)h, with ε ∈ S =
(
0,

K(
√
1+hr−1)

2

h2r

]
and HUS constant

κ = h(1+hr)√
1+hr−1 , where P0 ∈ D =

[
K(
√
1+hr−1)
hr ,∞

)
. For the three key

constants given here, we note that as the step-size h > 0 tends to zero, we

have

lim
h→0+

K
(√

1 + hr − 1
)2

h2r
=

rK

4
, lim

h→0+

K
(√

1 + hr − 1
)

hr
=

K

2
,

and

lim
h→0+

h(1 + hr)√
1 + hr − 1

=
2

r
.
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Remark: Y.W. Nam

If h = 1, then (1) can be rewritten as the iteration equation

P(t + 1) =

√
1 + rP(t)

r
K
√
1+r

P(t) + 1√
1+r

. (9)

Letting

a =
√
1 + r , b = 0, c =

r

K
√
1 + r

, d =
1√
1 + r

,

we see that

P(t + 1) =
aP(t) + b

cP(t) + d
with ad − bc = 1 and a + d > 2.

This is an example of a loxodromic Möbius di�erence equation. For more

on HUS of loxodromic Möbius di�erence equations, see Nam.
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Remark: Jung & Nam Comparison

In 2017, Jung and Nam gave an example of the conditional HUS for the

iteration equation

P(t + 1) =
AP(t)

CP(t) + 1
,

which is equivalent to (9), where

A = 1 + r and C =
r

K
.

Their result, expressed in the terms of our talk, is as follows: equation (9)

(resp., (1)) is conditionally HUS in CD∗ on N0, with

S∗ =
(
0, A

√
A−2A+

√
A

(A−
√
A+1)C

)
and HUS constant

κ∗ =

(√
A + 1√

A
− 1
)2

(√
A + 1√

A
− 1
)2
− 1

, D∗ =
(
−∞,−A−

√
A + 2

C

)
∪
(A−√A

C
,∞
)
.
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Remark: Jung & Nam Comparison

We note here that the term �conditional Hyers�Ulam stability� is not used

by them, and their original result shows that if β(0) is in D∗, then there

exists P(t) which satis�es (9) and

|β(t)− P(t)| ≤ |β(0)− P(0)|(√
A + 1√

A
− 1
)2t +

t−1∑
j=0

ε(√
A + 1√

A
− 1
)2j

for all t ∈ N0, where β(t) is a solution of (2). In our talk settings,

β(0) = P(0), so the �rst term on the right-hand side is 0. The second

term can be evaluated:

sup
t∈N0

t−1∑
j=0

ε(√
A + 1√

A
− 1
)2j =

(√
A + 1√

A
− 1
)2

(√
A + 1√

A
− 1
)2
− 1

ε.

Thus, we have their HUS constant κ∗.
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Remark: Jung & Nam Comparison

Compare our three important constants obtained earlier with Jung &

Nam's S∗, D∗, and κ∗, but note that the negative region of D∗ is omitted

since it is not of interest in our talk. First, we compare our result with

theirs for the upper bound of ε. Using A = 1 + r and C = r
K , we have

A
√
A− 2A +

√
A

(A−
√
A + 1)C

=
K
(√

1 + r − 1
)2

r
×

√
1 + r

2 + r −
√
1 + r

<
K
(√

1 + r − 1
)2

r
.

Our constant (RHS) is larger, allowing ε to be larger and still maintain

HUS. Next, we compare the condition on initial values. Since

A−
√
A

C
=

K
(√

1 + r − 1
)

r

√
1 + r >

K
(√

1 + r − 1
)

r
,

holds, we can conclude that our result guarantees HUS for larger ε and
smaller initial values.
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Remark: Stability Constant Comparison

Finally, for r > 0 compare the HUS constants

H(r) = κ =
1 + r√
1 + r − 1

and H∗(r) = κ∗ =

(√
1 + r + 1√

1+r
− 1
)2

(√
1 + r + 1√

1+r
− 1
)2
− 1

shown here. The red curve is H and the blue curve is H∗.

0 1.0136 5
r

20

H
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Remark: HUS Constants

Note that r ≈ 1.013624 solves H(r) = H∗(r). Thus, if 0 < r < 1.013624,
then our Hyers�Ulam stability constant H(r) = κ is better than theirs.

However, this statement may be reversed if r > 1.013624.
There is a reason why the HUS constants diverge as r approaches 0. If

h = 1 and r = 0, then (9) (resp., (1)) and (2) become ∆P(t) = 0 and

∆β(t) = q(t) with |q(t)| ≤ ε for all t ∈ N0. We put q(t) ≡ ε. Then we

have a soluion β(t) = εt. Since P(t) ≡ C is any solution of the equation

∆P(t) = 0, where C is an arbitrary constant, we see that

lim
t→∞

|β(t)− P(t)| = lim
t→∞

|εt − C | =∞.

This means that (9) is not Hyers�Ulam stable on N0. Therefore, it is a

natural consequence that limr→0+ H(r) = limr→0+ H∗(r) =∞. In addition,

we have limr→0+(H∗(r)− H(r)) =∞. That is, H∗(r) is much larger near

r = 0 than H(r).
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Example of HUS

Let h = 1, r = 1
3
, K = 9, ε = 3

5
, and P0 = 9

(
−3 + 2

√
3
)
. According to

the main theorem, since

0 < ε ≤
K
(√

1 + hr − 1
)2

h2r
= 63− 36

√
3 ≈ 0.646171

and

P0 ≥
K
(√

1 + hr − 1
)

hr
= 9

(
−3 + 2

√
3
)
,

exact solution P and approximate solutions ` and u with initial condition

P0 = `(0) = u(0) satisfy TP = T` = Tu =∞ and

|`(t)− P(t)|, |u(t)− P(t)| ≤ h(1 + hr)√
1 + hr − 1

ε =
4

5

(
3 + 2

√
3
)
≈ 5.17128

for all t ∈ [0,∞)h.
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Example continued

Note that in this speci�c instance we have

P(t) =
1

1
9

+ 21−2t3−
5

2
+t
, `(t) = 3 +

12

5 + 3
3

2
−3t25t

,

and u(t) is

9
(
53−

√
109
)t (

21− 16
√
3 + ρ

)
+ 9

(
53 +

√
109
)t (

16
√
3− 21 + ρ

)(
53−

√
109
)t (

53− 30
√
3 +
√
109
)

+
(
53 +

√
109
)t (−53 + 30

√
3 +
√
109
) ,

where ρ =
√
327

(
7− 4

√
3
)
, so that we have the numerical comparison for

t = 0, . . . , 10 given in Table 1.
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Example 1: Table of Stability

Table: Solutions and errors with h = 1, r = 1

3
, K = 9, ε = 3

5
, and

P(0) = `(0) = u(0) = P0 = 9
(
−3 + 2

√
3
)
.

t P(t) `(t) u(t) P(t)− `(t) u(t)− P(t)

0 4.17691 4.17691 4.17691 0.0 0.0

1 4.82309 4.22309 5.42309 0.6 0.6

2 5.45614 4.26919 6.62136 1.18695 1.16522

3 6.05189 4.31509 7.68981 1.7368 1.63792

4 6.59169 4.36065 8.58024 2.23105 1.98855

5 7.06428 4.40574 9.28147 2.65853 2.21719

6 7.46571 4.45025 9.80946 3.01546 2.34375

7 7.79806 4.49404 10.1937 3.30401 2.39569

8 8.0674 4.53702 10.4666 3.53039 2.39917

9 8.28195 4.57908 10.6569 3.70287 2.37492

10 8.4505 4.62013 10.788 3.83038 2.33748
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Example

If we keep all the parameter values the same but take ε = 4
5
instead of

ε = 3
5
, then ε >

K(
√
1+hr−1)

2

h2r
= 63− 36

√
3 ≈ 0.646171 and the right-hand

side of the di�erence between exact and approximate solutions becomes

h(1 + hr)√
1 + hr − 1

ε =
16

15

(
3 + 2

√
3
)
≈ 6.89504, (10)

so one of the hypotheses of the main theorem is not met. This is illustrated

in the next table.
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Example 2: Table of Instability

Table: Solutions and errors with h = 1, r = 1

3
, K = 9, ε = 4

5
, and

P(0) = `(0) = P0 = 9
(
−3 + 2

√
3
)
for equations (1) and (3), respectively.

t P(t) `(t) P(t)− `(t)

0 4.17691 4.17691 0.0

1 4.82309 4.02309 0.8

2 5.45614 3.86849 1.58764

3 6.05189 3.71158 2.3403

4 6.59169 3.5507 3.04099

15 8.86323 0.546773 8.31646

16 8.89703 −0.08544 8.98247

17 8.92255 −0.914282 9.83684

18 8.94179 −2.06177 11.0036

19 8.95627 −3.7763 12.7326

20 8.96716 −6.6538 15.621
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Example 3: HUS but Jung & Nam Doesn't Apply

Table: Solutions and errors with h = K = 1, r = 3, ε = 1

3
, and

P(0) = `(0) = u(0) = P0 = 1

3
.

t P(t) `(t) u(t) P(t)− `(t) u(t)− P(t)

0 0.333333 0.333333 0.33333 0.0 0.0

1 0.666667 0.333333 1.0 0.333333 0.333333

2 0.888889 0.333333 1.33333 0.555556 0.444444

3 0.969697 0.333333 1.4 0.636364 0.430303

4 0.992248 0.333333 1.41026 0.658915 0.418008

5 0.998051 0.333333 1.41176 0.664717 0.413714

6 0.999512 0.333333 1.41199 0.666179 0.412473

7 0.999878 0.333333 1.41202 0.666545 0.412139

8 0.999969 0.333333 1.41202 0.666636 0.412052

9 0.999992 0.333333 1.41202 0.666659 0.41203

10 0.999998 0.333333 1.41202 0.666665 0.412025
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Example 4: Instability due to change of ε from 1
3
to 2

5

Table: Solutions and errors with h = K = 1, r = 3, ε = 2

5
, and

P(0) = `(0) = P0 = 1

3
.

t P(t) `(t) |`(t)− P(t)|
1 0.666667 0.266667 0.4

2 0.888889 0.192593 0.696296

3 0.969697 0.0882629 0.881434

4 0.992248 −0.120861 1.11311

5 0.998051 −1.15844 2.15649

6 0.999512 1.47198 0.47247

7 0.999878 0.687147 0.312731

13 1.0 0.0733356 0.926664

14 1.0 −0.159557 1.15956

15 1.0 −1.62423 2.62423

16 1.0 1.27762 0.277625
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Example 4: Instability in the Di�erence

This is the di�erence between the exact solution and the approximate one

(zoom in).

50 100 150 200

0.5

1.0

1.5

2.0
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Example 4: Instability in the Di�erence

This is the di�erence between the exact solution and the approximate one

(zoom out).

50 100 150 200

10

20

30
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2025 Time Scales Seminar (Anderson) Logistic Models & Hyers�Ulam Stability 21 September 2025 43 / 55



Example 5: Blow up in �nite time

Table: Solutions and errors with h = K = 1, r = 3, ε = 1

3
, and

P(0) = `(0) = P0 = 1

4
, which is too small.

t P(t) `(t) |`(t)− P(t)|
0 0.25 0.25 0.0

1 0.571429 0.238095 0.333333

2 0.842105 0.222222 0.619883

3 0.955224 0.2 0.755224

4 0.988417 0.166667 0.82175

5 0.997079 0.111111 0.885968

6 0.999268 0.0 0.999268

7 0.999817 −0.33333 1.33315

8 0.999954 ∞ ∞
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Sensitivity Analysis

Since equation (1) can be rewritten as

P(t + h) =
K (1 + hr)P(t)

K + hrP(t)
,

if we further de�ne n := t
h and x(n) := P(hn), we obtain the following

di�erence equation:

x(n + 1) =
K (1 + hr)x(n)

K + hrx(n)
. (11)
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Sensitivity Analysis: K

First, we perform a sensitivity analysis of the parameter K , which represents

the carrying capacity. Di�erentiating (11) with respect to K , we obtain

∂x(n + 1)

∂K
=

hr(1 + hr)(
K

x(n) + hr
)2 .

Therefore, the sensitivity coe�cient for the parameter K is dependent on

the population size, x(n). Given that 0 < x(n) = P(ht) < K , we observe

that the sensitivity is low when the population is small (when x(n)
approaches 0), and the sensitivity is high when the population is large

(when x(n) approaches K ).
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Sensitivity Analysis: r

Next, we perform a sensitivity analysis of the parameter r , which represents

the growth rate. Di�erentiating (11) with respect to r , we obtain

∂x(n + 1)

∂r
=

hKx(n)(K − x(n))

(K + hrx(n))2
.

De�ne the function S(x) := hKx(K−x)
(K+hrx)2

for 0 < x < K . Then

S ′(x) =
hK 2(K − 2x)

(K + hrx)2
.

This demonstrates that the sensitivity is low when the population is small

or large (when x(n) approaches 0 or K ), and the sensitivity is high when

the population is at an intermediate level (when x(n) approaches K
2
).
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Sensitivity: Conclusion

Therefore, we can conclude that the carrying capacity K is sensitive when

the population is large, but even if some perturbation is added to the

equation, it does not a�ect the error between the approximate solution and

the true solution, so it is a parameter that does not need to be treated very

delicately. On the other hand, r and h exhibit sensitivity when the

population is at an intermediate level, and they also in�uence the error

between the approximate solution and the true solution. In many cases, h
is �xed in advance, and from a biological perspective, it is important to

investigate how the population changes from the intermediate stage.

Therefore, the parameter to which we should truly pay attention is r , which
represents the growth rate.
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Example

In (1) and (2) take h = K = 1. According to Theorem 5, if

0 < ε ≤
(√

1 + r − 1
)2

r
and P0 ≥

√
1 + r − 1

r

hold, then solutions P : [0,TP)1 → R and β : [0,Tβ)1 → R of (1) and (2),

respectively, with initial condition (5) satisfy TP = Tβ =∞ and

|β(t)− P(t)| ≤ 1 + r√
1 + r − 1

ε

for all t ∈ [0,∞)1. Table 6 shows the upper bounds of ε, the lower bounds
of P0, and the Hyers�Ulam stability constants, all of which depend on r .
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Table

Table: Upper bounds of ε, lower bounds of P0, and HUS constants, all dependent
on r .

r
(
√
1+r−1)

2

r

√
1+r−1
r

1+r√
1+r−1

0.1 0.023823 0.488088 22.5369

0.2 0.0455488 0.477226 12.5727

0.3 0.0654972 0.467251 9.27409

0.4 0.0839202 0.45804 7.64126

0.5 0.101021 0.44949 6.67423

0.6 0.116963 0.441518 6.03976

0.7 0.131884 0.434058 5.59504

0.8 0.145898 0.427051 5.26869
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Figure

10 20
t

0.5

1

Figure: The solution orbits with r = 0.2 (red), 0.5 (black), and 0.8 (blue).
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Conclusion

We establish robust conditional Hyers�Ulam stability results for the logistic

h-di�erence equation, also known as the Beverton-Holt equation if h = 1,

for any constant step-size h > 0. As h tends to zero, our results recover

known results for the conditional stability of the continuous logistic-growth

model. Additionally, departing from the methodology employed by Jung

and Nam in the case h = 1, we introduce a novel approach to derive

sharper results. Speci�cally, we explicitly determine the optimal lower

bound for the initial value region and the upper bound for the perturbation

amplitude, demonstrating an improvement over their �ndings.

Furthermore, our analysis yields a sharper Hyers�Ulam constant, which

quanti�es the error between the true and approximate solutions. Given that

a smaller Hyers�Ulam constant indicates greater stability and is desirable

for practical applications, our results o�er a substantial advancement in

precision. The sharpness of our derived bounds and constants is

substantiated through illustrative examples.
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Future Directions

Extend to periodic parameters for h-di�erence equations, and to general

time scales.

2025 Time Scales Seminar (Anderson) Logistic Models & Hyers�Ulam Stability 21 September 2025 53 / 55



Thanks to my co-author, Masakazu Onitsuka, Okayama University of

Science
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Thanks for Listening!
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