Speaker
Description
In this talk we  study the classes of
    bounded linear operators $\Phi :\mathcal{L}\left( X,Y\right) \rightarrow 
	\mathcal{L}\left( Z,W\right)$
    such that $\left( T_{n}\right) \rightarrow \left( \Phi \left( T_{n}\right)
	\right) $ maps $l_{p}^{s}\left( X,Y\right) $ into $l_{p}\left( Z,W\right) $, 
    $l_{p}^{s}\left( X,Y\right) $ into $l_{p}^{s}\left( Z,W\right) $ and $%
	l_{p}^{w}\left( X,Y\right) $ into $l_{p}^{w}\left( Z,W\right) $. The  Pietsch-type domination of $(l_{p}^{s},l_{p})
	$-summing linear operators is also given .
    \
    \vspace{0.3cm}\
    {\textbf {Keywords:}}$p-summing$ operator, Finite rank operator, 
    ideal property of $p-suming$ operators , Linear operator ideals,$(\ell^s_p,\ell_p)$-summing operators\
    {\bf {2020 Mathematics Subject Classification:}} Primary 47A35, 60Fxx, 60G10.%-----------------------
    \vspace{0.5cm}