Speaker
Description
In this talk we study the classes of
bounded linear operators $\Phi :\mathcal{L}\left( X,Y\right) \rightarrow
\mathcal{L}\left( Z,W\right)$
such that $\left( T_{n}\right) \rightarrow \left( \Phi \left( T_{n}\right)
\right) $ maps $l_{p}^{s}\left( X,Y\right) $ into $l_{p}\left( Z,W\right) $,
$l_{p}^{s}\left( X,Y\right) $ into $l_{p}^{s}\left( Z,W\right) $ and $%
l_{p}^{w}\left( X,Y\right) $ into $l_{p}^{w}\left( Z,W\right) $. The Pietsch-type domination of $(l_{p}^{s},l_{p})
$-summing linear operators is also given .
\
\vspace{0.3cm}\
{\textbf {Keywords:}}$p-summing$ operator, Finite rank operator,
ideal property of $p-suming$ operators , Linear operator ideals,$(\ell^s_p,\ell_p)$-summing operators\
{\bf {2020 Mathematics Subject Classification:}} Primary 47A35, 60Fxx, 60G10.%-----------------------
\vspace{0.5cm}